[TensorFlowJS只如初见]实战三·使用TensorFlowJS拟合曲线

[TensorFlowJS只如初见]实战三·使用TensorFlowJS拟合曲线问题描述拟合y=x*x-2x+3+0.1(-1到1的随机值)曲线给定x范围(0,3)问题分析在直线拟合博客中,我们使用最简单的y=wx+b的模型成功拟合了一条直线,现在我们在进一步进行曲线的拟合。简单的y=wx+b模型已经无法满足我们的需求,需要利用更多的神经元来解决问题了。代码<html><head><script…

大家好,又见面了,我是你们的朋友全栈君。

[TensorFlowJS只如初见]实战三·使用TensorFlowJS拟合曲线

  • 问题描述
    拟合y= x*x -2x +3 + 0.1(-1到1的随机值) 曲线
    给定x范围(0,3)

  • 问题分析
    直线拟合博客中,我们使用最简单的y=wx+b的模型成功拟合了一条直线,现在我们在进一步进行曲线的拟合。简单的y=wx+b模型已经无法满足我们的需求,需要利用更多的神经元来解决问题了。

  • 代码

<html>

<head>
  <script src="https://cdn.jsdelivr.net/npm/@tensorflow/tfjs"> </script>

</head>

<body>
  <button class="btn btn-primary" onclick="fnRun0();">开始0</button>
  <div id="p0Id">out0</div>
  <button class="btn btn-primary" onclick="fnRun1();">开始1</button>
  <div id="p1Id">out1</div>
  <button class="btn btn-primary" onclick="fnRun2();">开始2</button>
  <div id="p2Id">out2</div>
</body>

<script> function get_ys(xs) { 
     var ys = new Array(); for (var i = 0; i < xs.length; i++) { 
     ys[i] = xs[i] * xs[i] - 2 * xs[i] + 3 + (0.001 * (2 * Math.random() - 1)); } return (ys); } var xs = new Array(); for (var i = 0; i < 200; i++) { 
     xs[i] = 0.01 * i; } var ys = get_ys(xs); const xst = tf.tensor(xs, [xs.length, 1]); const yst = tf.tensor(ys, [ys.length, 1]); const a = tf.variable(tf.scalar(Math.random())); const b = tf.variable(tf.scalar(Math.random())); const c = tf.variable(tf.scalar(Math.random())); function predict(x) { 
     return tf.tidy(() => { 
     return a.mul(x.square()) .add(b.mul(x)) .add(c); }); } function loss(prediction, labels) { 
     const error = prediction.sub(labels).square().mean(); return error; } const numIterations = 1000; const learningRate = 0.12; const optimizer = tf.train.sgd(learningRate); function train(xst, yst, numIterations) { 
     for (var iter = 0; iter < numIterations+1; iter++) { 
     optimizer.minimize(() => { 
     const predsYs = predict(xst); if(iter%100==0){ 
     console.log(iter+" steps loss is "+loss(predsYs, yst)); } return loss(predsYs, yst); }); } const test_xs = tf.tensor([0.5,1,1.5],[3,1]); predict(test_xs).print(); } train(xst,yst,numIterations); </script>

</html>
  • 输出结果
    进行1000轮训练以后,我们输入[0.5,1,1.5]进行预测,得到结果为
    [[2.2503195],
    [2.0105994],
    [2.2543631]]
    较好地拟合了曲线。

log

"0 steps loss is Tensor
    1.7456094026565552"
"100 steps loss is Tensor
    0.08455191552639008"
"200 steps loss is Tensor
    0.040247201919555664"
"300 steps loss is Tensor
    0.0191580131649971"
"400 steps loss is Tensor
    0.009119458496570587"
"500 steps loss is Tensor
    0.004341088235378265"
"600 steps loss is Tensor
    0.0020665652118623257"
"700 steps loss is Tensor
    0.0009838765254244208"
"800 steps loss is Tensor
    0.0004685141902882606"
"900 steps loss is Tensor
    0.00022319876006804407"
"1000 steps loss is Tensor
    0.00010642936103977263"
"Tensor
    [[2.2503195],
     [2.0105994],
     [2.2543631]]"
版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请联系我们举报,一经查实,本站将立刻删除。

发布者:全栈程序员-站长,转载请注明出处:https://javaforall.net/160488.html原文链接:https://javaforall.net

(0)
全栈程序员-站长的头像全栈程序员-站长


相关推荐

  • 错动态链接库(DLL)初始化例程失败。

    错动态链接库(DLL)初始化例程失败。每次关闭一个Excel工作表或Word文档都会出现加载C:\DocumentsandSettings\Administrator\ApplicationData\MicrosoftSha

    2022年7月2日
    28
  • 全局平均池化层替代全连接层(最大池化和平均池化的区别)

    最近看了两张图,我对第一张图有些不同的见解。首先全连接层和softmax层是不同的两个部分,其次计算参数时候可以理解为,假设最后一个卷积层是4个4*4的特征图,类别为4,则计算量为4*4*4*4。同样去理解GAP,为4*4,而这里与softmax还没有关系。下面是第二张图,GAP最早来源于NIN…

    2022年4月15日
    240
  • 西班牙c2语言是什么标准,西班牙语的等级是怎么划分的?

    西班牙c2语言是什么标准,西班牙语的等级是怎么划分的?西班牙语根据欧洲共同语言参考标准分为:A1,A2,B1,B2,C1,C2六个级别。A1,A2为基础入门级别,B1,B2为高级进阶级别,C1,C2为流利进阶级别。《欧洲语言学习统一标准》(Cadreeuropéencommunderéférencepourleslangues),简称”欧标”。是欧洲议会在2001年11月通过的一套建议标准,为欧洲语言在评量架构和教学指…

    2022年5月22日
    49
  • pycharm激活码最新【中文破解版】

    (pycharm激活码最新)2021最新分享一个能用的的激活码出来,希望能帮到需要激活的朋友。目前这个是能用的,但是用的人多了之后也会失效,会不定时更新的,大家持续关注此网站~IntelliJ2021最新激活注册码,破解教程可免费永久激活,亲测有效,下面是详细链接哦~https://javaforall.net/100143.html…

    2022年3月30日
    43
  • Qt中的QFile读写文件操作「建议收藏」

    Qt中的QFile读写文件操作「建议收藏」1.首先记录一下QString,QByteArray,char*之间的转换(1)QString-&amp;gt;QByteArrayQStringbuf=&quot;123&quot;;QByteArraya=buf.toUtf8();//中文a=buf.toLocal8Bit();//本地编码(2)QByteArray-&amp;gt;char*char*b=a.data…

    2022年6月13日
    153
  • pycharm配置python运行环境_C中调用Python

    pycharm配置python运行环境_C中调用Python目录前言一、系统路径说明二、环境配置1.在VS中选择ReleaseX642.菜单栏中选择:项目->属性3.生成dll答疑python程序目录下没有Numpy路径?具体代码参考博客前言本文主要讲解在Python程序中调用C(C++)程序的方法。主要思路是:在VS中配置好环境后,将C语言程序打包生成动态库文件.dll。将.dll改名成.pyd之后,装入相应路径,在pycharm中直接import即可环境:win10Pycharm(python3.6)(64位)VS2017(社区版)

    2022年8月26日
    6

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

关注全栈程序员社区公众号