[EE261学习笔记] 4.常用的几个傅里叶变换相关公式

[EE261学习笔记] 4.常用的几个傅里叶变换相关公式在本文开始前,需要说明一点,以下推导出的各项公式,只是为了实际计算中方便,并不都有其对应的物理意义。首先,我们写出符号f−(t)=f(−t)f−(t)=f(−t)f^-(t)=f(-t),显然,对于奇函数而言,f−=−ff−=−ff^-=-f;对于偶函数而言,f−=ff−=ff^-=f。根据前文傅里叶变换推导,我们知道…

大家好,又见面了,我是你们的朋友全栈君。

在本文开始前,需要说明一点,以下推导出的各项公式,只是为了实际计算中方便,并不都有其对应的物理意义。


首先,我们写出符号 f − ( t ) = f ( − t ) f^-(t) = f(-t) f(t)=f(t),显然,对于奇函数而言, f − = − f f^- = -f f=f;对于偶函数而言, f − = f f^- = f f=f
根据前文傅里叶变换推导,我们知道

F f ( s ) = ∫ − ∞ + ∞ e − 2 π i s t f ( t ) d t (1) \mathscr{F}f(s) = \int_{-\infty}^{+\infty} e^{-2\pi ist} f(t)dt\tag1 Ff(s)=+e2πistf(t)dt(1)

F − 1 g ( t ) = ∫ − ∞ + ∞ e 2 π i s t g ( s ) d s (2) \mathscr{F}^{-1}g(t) = \int_{-\infty}^{+\infty} e^{2\pi ist} g(s)ds\tag2 F1g(t)=+e2πistg(s)ds(2)

( 1 ) (1) (1)式,我们有

( F f ) − ( s ) = F f ( − s ) = ∫ − ∞ + ∞ e − 2 π i ( − s ) t f ( t ) d t = ∫ − ∞ + ∞ e 2 π i s t f ( t ) d t (3) \begin{aligned} (\mathscr{F}f)^-(s) = \mathscr{F}f(-s) &= \int_{-\infty}^{+\infty} e^{-2\pi i(-s)t} f(t)dt\\ &= \int_{-\infty}^{+\infty} e^{2\pi ist} f(t)dt\tag3 \end{aligned} (Ff)(s)=Ff(s)=+e2πi(s)tf(t)dt=+e2πistf(t)dt(3)

我们再令 ( 2 ) (2) (2) 式中的 s = t , t = s s=t, t=s s=t,t=s,得到

F − 1 g ( s ) = ∫ − ∞ + ∞ e 2 π i s t g ( t ) d t (4) \mathscr{F}^{-1}g(s) = \int_{-\infty}^{+\infty} e^{2\pi ist} g(t)dt\tag4 F1g(s)=+e2πistg(t)dt(4)

( 3 ) (3) (3) ( 4 ) (4) (4),我们得到

( F f ) − = F − 1 f (5) (\mathscr{F}f)^- = \mathscr{F}^{-1}f \tag5 (Ff)=F1f(5)


再来看另一个变换

F ( f − ) ( s ) = ∫ − ∞ + ∞ e − 2 π i s t f − ( t ) d t = ∫ − ∞ + ∞ e − 2 π i s t f ( − t ) d t \begin{aligned} \mathscr{F}(f^-)(s) &= \int_{-\infty}^{+\infty} e^{-2\pi ist} f^-(t)dt\\ &=\int_{-\infty}^{+\infty} e^{-2\pi ist} f(-t)dt \end{aligned} F(f)(s)=+e2πistf(t)dt=+e2πistf(t)dt

运用换元法,令 u = − t u=-t u=t,我们有:

F ( f − ) ( u ) = ∫ + ∞ − ∞ e − 2 π i ( − u ) t f ( u ) d ( − u ) = ∫ − ∞ + ∞ e 2 π i u t f ( u ) d u = F − 1 f ( u ) \begin{aligned} \mathscr{F}(f^-)(u) &=\int_{+\infty}^{-\infty} e^{-2\pi i(-u)t} f(u)d(-u)\\ &=\int_{-\infty}^{+\infty} e^{2\pi iut} f(u)du\\ &=\mathscr{F}^{-1}f(u) \end{aligned} F(f)(u)=+e2πi(u)tf(u)d(u)=+e2πiutf(u)du=F1f(u)

要注意,等式左边的 F ( f − ) ( u ) \mathscr{F}(f^-)(u) F(f)(u) 中的 ( u ) (u) (u) 仅表示该式是关于 u u u 的函数,因此不用改写为 − u -u u
因此我们有:

F ( f − ) = F − 1 f (6) \mathscr{F}(f^-) = \mathscr{F}^{-1}f \tag6 F(f)=F1f(6)


接下来我们计算 F − 1 ( f − ) \mathscr{F}^{-1}(f^-) F1(f),根据 ( 2 ) (2) (2)式,我们有:

F − 1 f − ( t ) = ∫ − ∞ + ∞ e 2 π i s t f − ( s ) d s = ∫ − ∞ + ∞ e 2 π i s t f ( − s ) d s \begin{aligned} \mathscr{F}^{-1}f^-(t) &= \int_{-\infty}^{+\infty} e^{2\pi ist} f^-(s)ds\\ &=\int_{-\infty}^{+\infty} e^{2\pi ist} f(-s)ds\\ \end{aligned} F1f(t)=+e2πistf(s)ds=+e2πistf(s)ds

同样地,运用换元法,令 u = − s u=-s u=s,我们可以得到

F − 1 f − ( u ) = ∫ + ∞ − ∞ e 2 π i ( − u ) t f ( u ) d ( − u ) = ∫ − ∞ + ∞ e − 2 π i u t f ( u ) d u = F f ( u ) (7) \begin{aligned} \mathscr{F}^{-1}f^-(u) &=\int_{+\infty}^{-\infty} e^{2\pi i(-u)t} f(u)d(-u)\\ &=\int_{-\infty}^{+\infty} e^{-2\pi iut} f(u)du\\ &=\mathscr{F}f(u)\tag7 \end{aligned} F1f(u)=+e2πi(u)tf(u)d(u)=+e2πiutf(u)du=Ff(u)(7)

注意,傅里叶变换满足性质:

F F − 1 f = F − 1 F f = f (8) \mathscr{F}\mathscr{F}^{-1}f = \mathscr{F}^{-1}\mathscr{F}f = f\tag8 FF1f=F1Ff=f(8)

因此,由 ( 8 ) (8) (8) 式,我们可以对 ( 7 ) (7) (7) 式的等号两端同时进行傅里叶变换,得到以下结论:

F F f = f − \mathscr{F}\mathscr{F}f = f^- FFf=f

即,对一个函数进行两次傅里叶变换的结果,等于原函数取反


小结一下本文,并给出一个实际应用:

我们主要得到了以下几个傅里叶变换的实用公式:

( F f ) − = F − 1 f = F ( f − ) \huge (\mathscr{F}f)^- = \mathscr{F}^{-1}f = \mathscr{F}(f^-) (Ff)=F1f=F(f)

F F f = f − \huge \mathscr{F}\mathscr{F}f = f^- FFf=f

其中 f − ( t ) = f ( − t ) f^-(t) = f(-t) f(t)=f(t)。注意这些公式不一定都有相应的物理意义,但是在实际使用中可以大大简化我们的计算量

例:求 s i n c sinc sinc 函数的傅里叶变换

如果直接求解,会变得非常麻烦,于是我们使用上述公式, F F f = f − \mathscr{F}\mathscr{F}f = f^- FFf=f。在之前的讨论中,我们知道对矩形函数,即 Π \Pi Π函数进行傅里叶变换可以得到 s i n c sinc sinc 函数,因此我们有

F s i n c = F F Π = Π − \mathscr{F}sinc = \mathscr{F}\mathscr{F}\Pi = \Pi^- Fsinc=FFΠ=Π

而由 Π \Pi Π 函数的定义,可知它是一个偶函数
因此我们可以直接得出

F s i n c = Π \mathscr{F}sinc = \Pi Fsinc=Π

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请联系我们举报,一经查实,本站将立刻删除。

发布者:全栈程序员-站长,转载请注明出处:https://javaforall.net/160862.html原文链接:https://javaforall.net

(0)
全栈程序员-站长的头像全栈程序员-站长


相关推荐

  • mysql截取前几个字符串_mysql 截取字符串 函数[通俗易懂]

    mysql截取前几个字符串_mysql 截取字符串 函数[通俗易懂]文章摘取自http://www.cnblogs.com/zdz8207/p/3765073.html练习截取字符串函数(五个)mysql索引从1开始一、mysql截取字符串函数1、left(str,index)从左边第index开始截取2、right(str,index)从右边第index开始截取3、substring(str,index)当index>0从左边开始截取直到结束当ind…

    2022年6月9日
    95
  • kettle python_Kettle入门教程

    kettle python_Kettle入门教程最近做的项目用到了ETL工具Kettle,这个工具相当好用,可以将各种类型数据作为数据流,经过处理后再生成各种类型的数据。正如其名“水壶”,将各个地方的水倒进水壶里,再用水壶倒入不同的容器。不过一来初学乍用,二来对此任务不是很感兴趣,研究的不是很深入,可能是以一种不科学的方法使用的,但观教程,常用的内容似乎也涉及到了,并且Y大说过,要善于总结,于是有了这篇,作为入门说明吧。一、下载与安装官网地址大…

    2022年5月23日
    49
  • Jenkins(8)构建触发器之定时构建和轮询 SCM

    Jenkins(8)构建触发器之定时构建和轮询 SCM前言跑自动化用例每次用手工点击jenkins出发自动化用例太麻烦了,我们希望能每天固定时间跑,这样就不用管了,坐等收测试报告结果就行。jenkins的定时任务是用的crontab语法定时构建语法

    2022年7月28日
    6
  • CDN技术详解及实现原理「建议收藏」

    CDN技术详解及实现原理「建议收藏」CDN技术详解一本好的入门书是带你进入陌生领域的明灯,《CDN技术详解》绝对是带你进入CDN行业的那盏最亮的明灯。因此,虽然只是纯粹的重点抄录,我也要把《CDN技术详解》的精华放上网。公诸同好。第

    2022年7月2日
    48
  • dll文件注册器_怎么注册dll文件win10

    dll文件注册器_怎么注册dll文件win10点击  开始\所有程序\MicrosoftVisualStudio2008\VisualStudioTools 以管理员身份运行VisualStudio2008CommandPrompt。//注册Dll在VisualStudio2008CommandPrompt键入E:\>regasmmydll.dll.eg:E:\>regasmE:\Assig

    2022年8月22日
    5
  • c语言define的用法

    c语言define的用法1 define 的简单定义作用 define 相当于一个简单的文本替换 对于普通的常量定义 我就不必多说了 但是对于类似于函数定义的形式 可能会出现错误 例如 defineAdd x y x y 用到代码中时会出现问题 比如计算式子 c Add x y d 本意是计算出 x 与 y 的和之后在分别与 c d 做乘积 可是因为 define 仅仅相当于一个简单的文本替换 所以真实的计算

    2025年8月25日
    2

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

关注全栈程序员社区公众号