图像分割的原则_常用的图像分割方法

图像分割的原则_常用的图像分割方法在对处理后的图像数据进行分析之前,图像分割是最重要的步骤之一。它的主要目标是将图像化分为与其中含有的真实世界的物体或区域有枪相关性的组成部分。根据目标可将图像分割分为:1.完全分割——结果是

大家好,又见面了,我是你们的朋友全栈君。如果您正在找激活码,请点击查看最新教程,关注关注公众号 “全栈程序员社区” 获取激活教程,可能之前旧版本教程已经失效.最新Idea2022.1教程亲测有效,一键激活。

Jetbrains全系列IDE使用 1年只要46元 售后保障 童叟无欺

在对处理后的图像数据进行分析之前,图像分割是最重要的步骤之一。它的主要目标是将图像化分为与其中含有的真实世界的物体或区域有枪相关性的组成部分。

根据目标可将图像分割分为:
  1. 完全分割 —— 结果是一组唯一对应于输入图像中物体的互不相交的区域。
  2. 部分分割 —— 区域并不直接对应于图像物体。

其中图像数据的不确定性是主要的分割问题之一,通常伴随着信息噪声。

按照主要特征可以将分割方法分为:

  1. 有关图像或部分的全局知识,常用直方图表示。
  2. 基于边缘的图像分割
  3. 基于区域的图像分割

一、阈值化

灰度阈值化是最简单的分割处理。很多物体或图像区域表征为不变的反射率或其表面光的吸收率,可以确定一个亮度常量——阈值,从而来分割物体和背景。

方法主要是依据对所有像素的函数值与阈值 T 比较,从而确定是物体像素 or 背景像素。应用举例如下图:

图像分割的原则_常用的图像分割方法

(一) 阈值检测方法
1. \(p\) 率阈值化

需要事先知道经过分割后的图像的某种性质,就可以简化阈值选择的任务,因为阈值可以确保该性质得以满足的条件来选择。

缺点:通常没有关于面积比率的先验信息。

2. 模式方法

二模态阈值检测算法通常首先寻找最大的局部极大值,然后取它们之间的极小值作为阈值,这种技术称为模式方法

还有一些其他的阈值检测方法,例如:直方图凹度分析、熵方法、松弛法、多阈值方法等。

(二)最优阈值化

将图像的直方图用两个或更多个正态分布的概率密度函数来近似的方法,代表一种被称为最优阈值化的方法。这一方法在图像对比度条件变化很大的范围内性能良好。

将最优化和自适应阈值化结合起来的方法可应用与脑MR图像的分割。这种方法的局部子区域中计算局部直方图,以确定最优灰度分割函数。

(三)多光谱阈值化

许多实际的分割问题需要比单一谱段所含的更多的信息。例如,彩色图像的信息包含在三个谱段中,气象卫星图像可能具有更多的谱段。一种分割方法是在每个谱段中独立确定阈值,然后综合起来形成单一的分割图像。

例如,下图的算法步骤解释:

图像分割的原则_常用的图像分割方法

二、基于边缘的分割

基于边缘的分割代表了一大类基于图像边缘信息的方法。基于边缘的分割依赖于由边缘检测算子找到的图像边缘,这些边缘表示除了图像在灰度、彩色、纹理等方面不连续的位置。

在分割处理中可获得的先验信息越多,能达到的分割效果越好。

(一)边缘图像阈值化

在边缘图像中几乎没有0值像素,但是小的边缘值对应于由量化噪声、弱不规则照明引起的费显著的灰度变化。可以对边缘图像做简单的阈值化处理排除这些小的数值。这种方法是基于图像的边缘幅度由合适的阈值处理实现。

(二)边缘松弛法

由于边缘图像阈值化方法得到边界受图像噪声的影响很大,经常会遗漏重要的部分。通过在它们相互邻域的上下文中考虑边缘的性质能够增加图像的品质。

所有的图像性质包括进一步的边缘存在性在内,都经过迭代评价而精确性提高,直至所有的边缘上下文完全清晰位置。这种评价是基于指定局部邻域内的边缘强度进行的,每个边缘的信度可能被增加 or 被减小。

(三)边缘跟踪

如果区域的边界未知,单区域本身在图像中已经定义了,那么边界可以唯一地检测出来。算法如下:

图像分割的原则_常用的图像分割方法

还有一些其他的搜索方法,eg.基于图的边缘跟踪、作为动态规划的边缘跟踪、Hough变换、使用边界未知信息的边界检测等方法。

三、基于区域的分割

以区域的边界构造区域以及检测存在的区域的边界是容易做到的。但是,通过基于边缘的方法和由区域增长方法得到的分割,通常并不总是相同的。因此引入了基于区域的分割方法。

(一)区域归并

最自然的区域增长方法是原始图像数据上开始增长,每个像素表示一个区域。算法如下:

图像分割的原则_常用的图像分割方法

(二)区域分裂

与区域归并相反,从将整个图像表示为单个区域开始,该区域一般不能满足条件\(H(R_i) = True,i=1,2,…S\)

区域分裂方法一般使用与区域归并方法相似的准则,区别仅在于应用的方向上。

(三)分裂与归并

这种方法可以兼有分裂与合并两种方法的优点。分裂与归并方法在金字塔图像表示上进行,区域是方形的与合适的金字塔层元素对应。

算法如下图:

图像分割的原则_常用的图像分割方法

除以上之外,还有分水岭分割、区域增长后处理等方法。

续集图像分割(2)之匹配标准、匹配策略及分割评测问题

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请联系我们举报,一经查实,本站将立刻删除。

发布者:全栈程序员-站长,转载请注明出处:https://javaforall.net/166742.html原文链接:https://javaforall.net

(0)
全栈程序员-站长的头像全栈程序员-站长


相关推荐

  • Stata计算莫兰指数基本步骤

    Stata计算莫兰指数基本步骤之前的博客有介绍过R和Geoda计算莫兰指数的方法,考虑到有时候我们需要自定义空间权重矩阵来计算莫兰指数,那以上两种方法显得有点复杂。所以,今天来分享Stata计算莫兰指数的方法~目录一、数据准备1.1数据导入1.2程序包下载二、导入权重矩阵三、莫兰指数计算3.1全局莫兰指数计算3.2局部莫兰指数计算四、莫兰指数图全部代码一、数据准备1.1数据导入本次案例使用的数据为15-19年全国的人均GDP,数据图如下:Stata中导入数据的方式十分便捷,通常可以分以下两种:打开数据编

    2022年6月25日
    132
  • 不同数据库的特点_简述数据库的特点

    不同数据库的特点_简述数据库的特点MySQL1.事务四大特性原子性:不可分割的操作单元,事务中所有操作,要么全部成功;要么撤回到执行事务之前的状态一致性:如果在执行事务之前数据库是一致的,那么在执行事务之后数据库也还是一致的;

    2022年8月1日
    6
  • linux 删除ip地址_linux 固定ip

    linux 删除ip地址_linux 固定ip欢迎使用Markdown编辑器写博客本Markdown编辑器使用StackEdit修改而来,用它写博客,将会带来全新的体验哦:Markdown和扩展Markdown简洁的语法代码块高亮图片链接和图片上传LaTex数学公式UML序列图和流程图离线写博客导入导出Markdown文件丰富的快捷键快捷键加粗Ctrl+B斜体Ctrl+I引用Ctrl

    2022年10月20日
    3
  • django动态路由_路由器和转换器的区别

    django动态路由_路由器和转换器的区别自定义路径转换器有时候上面的内置的url转换器并不能满足我们的需求,因此django给我们提供了一个接口可以让我们自己定义自己的url转换器django内置的路径转换器源码解析在我们自定义路由转

    2022年7月29日
    6
  • mybatiscodehelperpro官网_iphone更新现在安装

    mybatiscodehelperpro官网_iphone更新现在安装mybatis的插件

    2022年9月21日
    3
  • LoadRunner11实操压力测试-一步一步慢慢来

    LoadRunner11实操压力测试-一步一步慢慢来录制脚本、修改脚本、运行脚本、测试结果

    2022年7月18日
    16

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

关注全栈程序员社区公众号