偏度和峰度的计算

偏度和峰度的计算偏度(skewness)和峰度(kurtosis):偏度能够反应分布的对称情况,右偏(也叫正偏),在图像上表现为数据右边脱了一个长长的尾巴,这时大多数值分布在左侧,有一小部分值分布在右侧。峰度反应

大家好,又见面了,我是你们的朋友全栈君。如果您正在找激活码,请点击查看最新教程,关注关注公众号 “全栈程序员社区” 获取激活教程,可能之前旧版本教程已经失效.最新Idea2022.1教程亲测有效,一键激活。

Jetbrains全系列IDE使用 1年只要46元 售后保障 童叟无欺

偏度(skewness)和峰度(kurtosis):

  偏度能够反应分布的对称情况,右偏(也叫正偏),在图像上表现为数据右边脱了一个长长的尾巴,这时大多数值分布在左侧,有一小部分值分布在右侧。

  峰度反应的是图像的尖锐程度:峰度越大,表现在图像上面是中心点越尖锐。在相同方差的情况下,中间一大部分的值方差都很小,为了达到和正太分布方差相同的目的,必须有一些值离中心点越远,所以这就是所说的“厚尾”,反应的是异常点增多这一现象。

 

偏度的定义:

image

样本X的偏度为样本的三阶标准矩

其中$\mu$是均值,$\delta$为标准差,E是均值操作。$\mu_3$是三阶中心距,$\kappa_t $是$t^{th}$累积量

 

偏度可以由三阶原点矩来进行表示:

image

 

样本偏度的计算方法:

一个容量为n的数据,一个典型的偏度计算方法如下:

image

其中$\bar x$为样本的均值(和$\mu$的区别是,$\mu$是整体的均值,$\bar x$为样本的均值)。s是样本的标准差,$m_3$是样本的3阶中心距。

另外一种定义如下:

image

$k_3$是三阶累积量$\kappa_3$的唯一对称无偏估计(unique symmetric unbiased estimator)($k_3$ 和 $\kappa_3$写法不一样)。$k_2=s^2$是二阶累积量的对称无偏估计。

大多数软件当中使用$G_1$来计算skew,如Excel,Minitab,SAS和SPSS。

 

峰度的定义:

image

  峰度定义为四阶标准矩,可以看出来和上面偏度的定义非常的像,只不过前者是三阶的。

 

样本的峰度计算方法:

image

 

样本的峰度还可以这样计算:

 

image

其中$k_4$是四阶累积量的唯一对称无偏估计,$k_2$是二阶累积量的无偏估计(等同于样本方差),$m_4$是样本四阶平均距,$m_2$是样本二阶平均距。

同样,大多数程序都是采用$G_2$来计算峰度。

 

python使用pandas来计算偏度和峰度

import pandas as pd
x = [53, 61, 49, 66, 78, 47]
s = pd.Series(x)
print(s.skew())
print(s.kurt())

它是用上面的$G_1$来计算偏度  $G_2$来计算峰度,结果如下:

0.7826325504212567
-0.2631655441038463

 

参考:

    偏度和峰度如何影响您的分布

    Skewness 维基百科给出了偏差的计算公式

   Kurtosis  维基百科给出峰度的计算公式

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请联系我们举报,一经查实,本站将立刻删除。

发布者:全栈程序员-站长,转载请注明出处:https://javaforall.net/167123.html原文链接:https://javaforall.net

(0)
全栈程序员-站长的头像全栈程序员-站长


相关推荐

  • 列车调度 思路解析

    列车调度 思路解析火车站的列车调度铁轨的结构如下图所示。两端分别是一条入口(Entrance)轨道和一条出口(Exit)轨道,它们之间有N条平行的轨道。每趟列车从入口可以选择任意一条轨道进入,最后从出口离开。在图中有9趟列车,在入口处按照{8,4,2,5,3,9,1,6,7}的顺序排队等待进入。如果要求它们必须按序号递减的顺序从出口离开,则至少需要多少条平行铁轨用于调度?输入格式:输入第一行给出一个…

    2022年7月26日
    4
  • kl1083_显示器dpi是什么意思

    kl1083_显示器dpi是什么意思Windy 定义了一种 Windy 数:不含前导零且相邻两个数字之差至少为 2 的正整数被称为 Windy 数。Windy 想知道,在 A 和 B 之间,包括 A 和 B,总共有多少个 Windy 数?输入格式共一行,包含两个整数 A 和 B。输出格式输出一个整数,表示答案。数据范围1≤A≤B≤2×109输入样例1:1 10输出样例1:9输入样例2:25 50输出样例2:20#include<bits/stdc++.h>using namespace std;

    2022年8月9日
    4
  • 一比一还原axios源码(七)—— 取消功能

    按照惯例,我们先来看下官方的例子:你可以通过axios的CancelToken工厂函数,生成一个source,然后把这个对象作为参数传递给axios,最后,需要取消的时候调用source的cance

    2022年3月25日
    38
  • pycharm怎样添加解释器_pycharm2017解释器

    pycharm怎样添加解释器_pycharm2017解释器如何配置pycharm里面的python解释器?

    2022年8月28日
    0
  • redis连接时报错:Could not connect to Redis at 192.168.1.21:6379: Connection refused

    redis连接时报错:Could not connect to Redis at 192.168.1.21:6379: Connection refusedbrewinstallredis安装好redis用terminal连接redis查看状态时时出现错误:[root@admin2bin]#redis-cli-h192.168.1.21infoReplicationCouldnotconnecttoRedisat192.168.1.21:6379:Connectionrefused但是查看127.0.0…

    2022年6月3日
    40
  • string类型保留两位小数_js保留4位小数

    string类型保留两位小数_js保留4位小数一Math.round(),Math.ceil(),Math.floor()的区别Math.round():根据“round”的字面意思“附近、周围”,可以猜测该函数是求一个附近的整数小数点后第一位<5正数:Math.round(11.46)=11负数:Math.round(-11.46)=-11小数点后第一位>5正数:Math.round(11.68)=12负数:Math.rou…

    2022年8月10日
    5

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

关注全栈程序员社区公众号