偏度和峰度的计算

偏度和峰度的计算偏度(skewness)和峰度(kurtosis):偏度能够反应分布的对称情况,右偏(也叫正偏),在图像上表现为数据右边脱了一个长长的尾巴,这时大多数值分布在左侧,有一小部分值分布在右侧。峰度反应

大家好,又见面了,我是你们的朋友全栈君。如果您正在找激活码,请点击查看最新教程,关注关注公众号 “全栈程序员社区” 获取激活教程,可能之前旧版本教程已经失效.最新Idea2022.1教程亲测有效,一键激活。

Jetbrains全系列IDE使用 1年只要46元 售后保障 童叟无欺

偏度(skewness)和峰度(kurtosis):

  偏度能够反应分布的对称情况,右偏(也叫正偏),在图像上表现为数据右边脱了一个长长的尾巴,这时大多数值分布在左侧,有一小部分值分布在右侧。

  峰度反应的是图像的尖锐程度:峰度越大,表现在图像上面是中心点越尖锐。在相同方差的情况下,中间一大部分的值方差都很小,为了达到和正太分布方差相同的目的,必须有一些值离中心点越远,所以这就是所说的“厚尾”,反应的是异常点增多这一现象。

 

偏度的定义:

image

样本X的偏度为样本的三阶标准矩

其中$\mu$是均值,$\delta$为标准差,E是均值操作。$\mu_3$是三阶中心距,$\kappa_t $是$t^{th}$累积量

 

偏度可以由三阶原点矩来进行表示:

image

 

样本偏度的计算方法:

一个容量为n的数据,一个典型的偏度计算方法如下:

image

其中$\bar x$为样本的均值(和$\mu$的区别是,$\mu$是整体的均值,$\bar x$为样本的均值)。s是样本的标准差,$m_3$是样本的3阶中心距。

另外一种定义如下:

image

$k_3$是三阶累积量$\kappa_3$的唯一对称无偏估计(unique symmetric unbiased estimator)($k_3$ 和 $\kappa_3$写法不一样)。$k_2=s^2$是二阶累积量的对称无偏估计。

大多数软件当中使用$G_1$来计算skew,如Excel,Minitab,SAS和SPSS。

 

峰度的定义:

image

  峰度定义为四阶标准矩,可以看出来和上面偏度的定义非常的像,只不过前者是三阶的。

 

样本的峰度计算方法:

image

 

样本的峰度还可以这样计算:

 

image

其中$k_4$是四阶累积量的唯一对称无偏估计,$k_2$是二阶累积量的无偏估计(等同于样本方差),$m_4$是样本四阶平均距,$m_2$是样本二阶平均距。

同样,大多数程序都是采用$G_2$来计算峰度。

 

python使用pandas来计算偏度和峰度

import pandas as pd
x = [53, 61, 49, 66, 78, 47]
s = pd.Series(x)
print(s.skew())
print(s.kurt())

它是用上面的$G_1$来计算偏度  $G_2$来计算峰度,结果如下:

0.7826325504212567
-0.2631655441038463

 

参考:

    偏度和峰度如何影响您的分布

    Skewness 维基百科给出了偏差的计算公式

   Kurtosis  维基百科给出峰度的计算公式

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请联系我们举报,一经查实,本站将立刻删除。

发布者:全栈程序员-站长,转载请注明出处:https://javaforall.net/167123.html原文链接:https://javaforall.net

(0)
全栈程序员-站长的头像全栈程序员-站长


相关推荐

  • 图像去噪序列——BM3D图像去噪模型实现

    图像去噪序列——BM3D图像去噪模型实现1.BM3D模型简介BM3D模型是一个两阶段图像去噪方法,主要包含两个步骤:(1)在噪声图像上,利用局部区域搜索相似块,并进行堆叠,在变换域(DCT域、FFT域)利用硬阈值去噪方法对堆叠的图像块进行去噪,获得堆叠相似块的估计值,最后,根据均值权重进行聚合;(2)通过步骤(1)获取初步估计的图像,在初步估计的图像上进行相似块的聚合;然后,利用维纳协同滤波进行图像去噪,从而,获取最后的去…

    2022年6月4日
    30
  • 什么是数据安全软件?「建议收藏」

    什么是数据安全软件?「建议收藏」数据安全软件有各种形式和大小。工具存在并且旨在保护所有类型的数据,从单个消息到整个数据库。每家公司,无论规模大小,都应将数据安全作为核心业务实践,并尽其所能确保存储在其业务每个缝隙中的数据受到保护;任何对敏感信息的盗窃都可能损害企业和客户。

    2022年5月21日
    38
  • Aegis 简介_aegisthus

    Aegis 简介_aegisthus是一个数据绑定API,用于在Java对象与XML文档之间执行映射。使用Aegis的好处:Aegis使用外部映射文件为开发人员提供更多的控制权和灵活性,使他们能够根据其项目需要来定制映射。A

    2022年8月2日
    15
  • MinGW 安装教程

    前言本文主要讲述如何安装C语言编译器——MinGW,特点是文章附有完整详细的实际安装过程截图,文字反而起说明提示作用。编写本文的原因始于我的一个观点:图片可以比文字传达更多的信息,也能让其他人更容易理解作者的意图及思想。因此,我将安装MinGW的过程和步骤,编写成了这篇以图片为主的教程,为了让看到这篇文章的任何人,都可以很容易按照图片所示正确安装MinGW。一、什么是…

    2022年4月8日
    214
  • 网页游戏公司遇到的政策难题有哪些_遇到退不出的网页怎么办

    网页游戏公司遇到的政策难题有哪些_遇到退不出的网页怎么办原文地址:http://www.chinagcn.com/news/show.php?itemid=99国务院412号令规定保留新闻出版总署“出版境外著作权人授权的电子出版物(包含互联网游戏作品)审

    2022年8月1日
    8
  • String.Format使用方法

    String.Format使用方法

    2021年11月23日
    55

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

关注全栈程序员社区公众号