pipeline和baseline是什么?

pipeline和baseline是什么?昨天和刚来项目的机器学习小白解释了一边什么baseline和pipeline,今天在这里总结一下什么是baseline和pipeline。1.pipeline1.1从管道符到pipeline

大家好,又见面了,我是你们的朋友全栈君。如果您正在找激活码,请点击查看最新教程,关注关注公众号 “全栈程序员社区” 获取激活教程,可能之前旧版本教程已经失效.最新Idea2022.1教程亲测有效,一键激活。

Jetbrains全系列IDE使用 1年只要46元 售后保障 童叟无欺

 

昨天和刚来项目的机器学习小白解释了一边什么baseline 和pipeline,今天在这里总结一下什么是baseline和pipeline。

1.pipeline

1.1 从管道符到pipeline

先从在linux的管道符讲起,

find ./ | grep wqbin | sort 

inux体系下的各种命令工具的处理,可以使用管道符作为传递,这是一种良好的接口规范,工具的功能有公共的接口规范,就像流水线一样,一步接着一步。

而我们只需改动每个参数就可以获取我们想要的结果。该过程就被称之管道机制。

一个基础的 机器学习的Pipeline 主要包含了下述 5 个步骤:

- 数据读取
- 数据预处理
- 创建模型
- 评估模型结果
- 模型调参

上5个步骤可以抽象为一个包括多个步骤的流水线式工作,从数据收集开始至输出我们需要的最终结果。

因此,对以上多个步骤、进行抽象建模,简化为流水线式工作流程则存在着可行性,流水线式机器学习比单个步骤独立建模更加高效、易用。

管道机制在机器学习算法中得以应用的根源在于,参数集在新数据集(比如测试集)上的重复使用。

1.2sklearn中pipeline为例

sklearn也遵循pipeline机制,并封装到 sklearn.pipline命名空间下面

pipeline和baseline是什么?

 

 

 

pipeline.FeatureUnion(transformer_list[, …])    Concatenates results of multiple transformer objects.
pipeline.Pipeline(steps[, memory])              Pipeline of transforms with a final estimator.
pipeline.make_pipeline(*steps, **kwargs)        Construct a Pipeline from the given estimators.
pipeline.make_union(*transformers, **kwargs)    Construct a FeatureUnion from the given trans

PIPELINE

sklearn中把机器学习处理过程抽象为estimator,其中estimator都有fit方法,表示数据进行初始化or训练。estimator有2种:

1、特征变换(transformer)
可以理解为特征工程,即:特征标准化、特征正则化、特征离散化、特征平滑、onehot编码等。该类型统一由一个transform方法,用于fit数据之后,输入新的数据,进行特征变换。

2、预测器(predictor)
即各种模型,所有模型fit进行训练之后,都要经过测试集进行predict所有,有一个predict的公共方法。

上面的抽象的好处即可实现机器学习的pipeline,显然特征变换是可能并行的,通过FeatureUnion实现。特征变换在训练集、测试集之间都需要统一,所以pipeline可以达到模块化的目的。举个NLP处理的例子:

# 生成训练数据、测试数据
X_train, X_test, y_train, y_test = train_test_split(X, y)

# pipeline定义
pipeline = Pipeline([
        ('vect', CountVectorizer()),
        ('tfidf', TfidfTransformer()),
        ('clf', RandomForestClassifier())
])

# train classifier
pipeline.fit(X_train, y_train)

# predict on test data
y_pred = pipeline.predict(X_test)

FEATUREUNION

上面看到特征变换往往需要并行化处理,即FeatureUnion所实现的功能。

pipeline = Pipeline([
             ('features', FeatureUnion([
                  ('text_pipeline', Pipeline([
                        ('vect', CountVectorizer(tokenizer=tokenize)),
                        ('tfidf', TfidfTransformer())
                     ])),
                ('findName', FineNameExtractor())
              ]))
            ('clf', RandomForestClassifier())
       ])

pipeline还可以嵌套pipeline,整个机器学习处理流程就像流水工人一样。

上面自定义了一个pipeline处理对象FineNameExtractor,该对象是transformer,自定义一个transformer是很简单的,创建一个对象,继承自BaseEstimator, TransformerMixin即可,

代码如下:

from sklearn.base import BaseEstimator, TransformerMixin
class FineNameExtractor(BaseEstimator, TransformerMixin):

    def find_name(self, text):
        return True

    def fit(self, X, y=None):
        return self

    def transform(self, X):
        X_tagged = pd.Series(X).apply(self.find_name)
        return pd.DataFrame(X_tagged)

执行一个PIPELINE,加上自动调参就可以了,sklearn的调参通过GridSearchCV实现=》pipeline+gridsearch。

GridSearchCV实际上也有fit、predict方法,所以,训练与预测高效抽象的,代码很简洁。

2.baseline

baseline这个概念是作为算法提升的参照物而存在的,相当于一个基础模型,可以以此为基准来比较对模型的改进是否有效。
通常在一些竞赛或项目中,baseline就是指能够顺利完成数据预处理、基础的特征工程、模型建立以及结果输出与评价,然后通过深入进行数据处理、特征提取、模型调参与模型提升或融合,使得baseline可以得到改进。
所以这个没有明确的指代,改进后的模型也可以作为后续模型的baseline。

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请联系我们举报,一经查实,本站将立刻删除。

发布者:全栈程序员-站长,转载请注明出处:https://javaforall.net/167460.html原文链接:https://javaforall.net

(0)
全栈程序员-站长的头像全栈程序员-站长


相关推荐

  • 多种方法彻底解决pycharm中: OSError: [WinError 1455] 页面文件太小,无法完成操作 的问题

    多种方法彻底解决pycharm中: OSError: [WinError 1455] 页面文件太小,无法完成操作 的问题目录1.重启pycharm(基本没啥用)2.把num_works设置为0(可能也没啥用)3.调大页面文件的大小(彻底解决问题)相信很多小伙伴在使用pycharm的时候都遇到这个问个报错问题吧,我是在跑PyTorch相关代码遇到的这个问题,也搜索了很多解决办法,这里介绍下我总结的经验.这是我搜索到的三种解决方法,依次来介绍下:1.重启pycharm(基本没啥用)这是最简单的方法了,可以先尝试一下,反正也很简单,不过如果你是第一次遇到这个问题,基本是解…

    2022年6月24日
    410
  • 关于Android 10.0适配,看这篇就够了

    本文将从三个角度介绍AndroidQ的部分适配问题,也是大家开发适配过程中大概率会遇到的问题:Q行为变更:所有应用(不管targetSdk是多少,对所有跑在Q设备上的应用均有影响) Q行为变更:以AndroidQ为目标平台的应用(targetSDK==Q才有影响) 项目升级遇到的问题至于Q的新功能及SDK,项目中并没有涉及,故暂不介绍,只放出链接AndroidQ新AP…

    2022年4月8日
    80
  • pytest接口自动化测试框架_java做接口自动化

    pytest接口自动化测试框架_java做接口自动化pytest接口自动化完整框架思维导图

    2022年7月31日
    4
  • goland激活_最新在线免费激活

    (goland激活)好多小伙伴总是说激活码老是失效,太麻烦,关注/收藏全栈君太难教程,2021永久激活的方法等着你。IntelliJ2021最新激活注册码,破解教程可免费永久激活,亲测有效,下面是详细链接哦~https://javaforall.net/100143.html08G05E7DZH-eyJsaWNlbnNlSW…

    2022年3月28日
    72
  • 各种加解密算法比較

    各种加解密算法比較

    2021年12月5日
    46
  • c#正则表达式定义「建议收藏」

    c#正则表达式定义「建议收藏」正则表达式(regularexpression)描述了一种字符串匹配的模式,可以用来检查一个串是否含有某种子串、将匹配的子串做替换或者从某个串中取出符合某个条件的子串等。  列目录时, dir*.txt或ls*.txt中的*.txt就不是一个正则表达式,因为这里*与正则式的*的含义是不同的。  正则表达式是由普通字符(例如字符a到z)以及特殊字符(称为元字符)组成的文

    2025年7月1日
    3

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

关注全栈程序员社区公众号