一个多边形内部有3枚钉子_多边形的内部和外部

一个多边形内部有3枚钉子_多边形的内部和外部Time Limit : 2000/1000ms (Java/Other) Memory Limit : 65536/32768K (Java/Other)Total Submission(s) : 24 Accepted Submission(s) : 7Problem DescriptionStatement of the Problem Several drawing applications allow us to draw polygons and almost all of the

大家好,又见面了,我是你们的朋友全栈君。如果您正在找激活码,请点击查看最新教程,关注关注公众号 “全栈程序员社区” 获取激活教程,可能之前旧版本教程已经失效.最新Idea2022.1教程亲测有效,一键激活。

Jetbrains全系列IDE使用 1年只要46元 售后保障 童叟无欺

Time Limit : 2000/1000ms (Java/Other) Memory Limit : 65536/32768K (Java/Other)
Total Submission(s) : 24 Accepted Submission(s) : 7
Problem Description
Statement of the Problem Several drawing applications allow us to draw polygons and almost all of them allow us to fill them with some color. The task of filling a polygon reduces to knowing which points are inside it, so programmers have to colour only those points.
You’re expected to write a program which tells us if a given point lies inside a given polygon described by the coordinates of its vertices. You can assume that if a point is in the border of the polygon, then it is in fact inside the polygon.

Input Format

The input file may contain several instances of the problem. Each instance consists of: (i) one line containing integers N, 0 < N < 100 and M, respectively the number of vertices of the polygon and the number of points to be tested. (ii) N lines, each containing a pair of integers describing the coordinates of the polygon’s vertices; (iii) M lines, each containing a pair of integer coordinates of the points which will be tested for “withinness” in the polygon.

You may assume that: the vertices are all distinct; consecutive vertices in the input are adjacent in the polygon; the last vertex is adjacent to the first one; and the resulting polygon is simple, that is, every vertex is incident with exactly two edges and two edges only intersect at their common endpoint. The last instance is followed by a line with a 0 (zero).

Output Format

For the ith instance in the input, you have to write one line in the output with the phrase “Problem i:”, followed by several lines, one for each point tested, in the order they appear in the input. Each of these lines should read “Within” or “Outside”, depending on the outcome of the test. The output of two consecutive instances should be separated by a blank line.

Sample Input

3 1
0 0
0 5
5 0
10 2
3 2
4 4
3 1
1 2
1 3
2 2
0

题解
判断点在多边形内部

#include<bits/stdc++.h>
using namespace std;
const double eps = 1e-8;
double pi = acos(-1);
int sgn(double x){ 
   
    if(fabs(x) < eps)return 0;
    if(x < 0)return -1;
    return 1;
}
int dcmp(double x,double y){ 
   
    if(fabs(x - y) < eps)return 0;
    if(x < y)return -1;
    return 1;
}
struct Point{ 
   
    double x,y;
    Point(){ 
   }
    Point(double x,double y):x(x),y(y){ 
   }
    Point operator+(Point B){ 
   return Point(x + B.x,y +B.y);}
    Point operator-(Point B){ 
   return Point(x - B.x,y - B.y);}
    Point operator*(double k){ 
   return Point(x * k,y * k);}
    Point operator/(double k){ 
   return Point(x / k,y / k);}
    bool operator==(Point B){ 
   return !dcmp(x,B.x) && !dcmp(y,B.y);}
};
typedef Point Vector;
double Dot(Vector A,Vector B){ 
   
    return A.x * B.x + A.y * B.y;
}
double Cross(Vector A,Vector B){ 
   
    return A.x * B.y - A.y * B.x;
}
double Distance(Point A,Point B){ 
   
    return sqrt((A.x - B.x) * (A.x - B.x) + (A.y - B.y) * (A.y - B.y));
}
struct Line{ 
   
    Point p1,p2;
    Line(){ 
   }
    Line(Point p1,Point p2):p1(p1),p2(p2){ 
   }
    Line(Point p,double angle){ 
   
        p1 = p;
        if(sgn(angle - pi / 2) == 0)p2 = (p1 + Point(0,1));
        else p2 = (p1 + Point(1,tan(angle)));
    }
    Line(double a,double b,double c){ 
   
        if(sgn(a) == 0)p1 = Point(0,-c / b),p2 = Point(1,-c / b);
        else if(sgn(b) == 0)p1 = Point(-c / a,0),p2 = Point(-c / a,1);
        else p1 = Point(0,-c / b),p2 = Point(1,(-c - a) / b);
    }
};
typedef Line Segment;
int Point_Lint_Relation(Point p,Line v){ 
   
    int c = sgn(Cross(p - v.p1,v.p2 - v.p1));
    if(c == -1)return 1;//点在直线的左边
    else if(c == 0)return 0;//点在直线上
    else return 2;//点在直线的右边
}
bool Point_On_Line(Point p,Segment v){ 
   
    return sgn(Cross(p - v.p1,p - v.p2)) == 0 && Dot(v.p1 - p,v.p2 - p) <= 0;
}


bool Point_In_Polygon(Point pt,Point *p,int n){ 
   
    for(int i = 0;i < n;i ++)
        if(p[i] == pt)return true;
    for(int i = 0;i < n;i ++){ 
   
        Line v(p[i],p[(i + 1) % n]);
        if(Point_On_Line(pt,v))return true;
    }
    int num = 0;
    for(int i = 0;i < n;i ++){ 
   
        Point p1 = p[i],p2 = p[(i + 1) % n];
        int dir = Cross(p2 - p1,pt - p1);
        int u = p1.y - pt.y,v = p2.y - pt.y;
        if(dir > 0 && sgn(u) < 0 && sgn(v) >= 0)num ++;
        else if(dir < 0 && sgn(u) >= 0 && sgn(v) < 0)num --;
    }
    return num != 0;
}
const int N = 110;
Point polygons[N];
int main()
{ 
   
    int n,m;
    int x,y;
    int T = 0;
    while(cin>>n,n){ 
   
        cin>>m;
        if(T != 0)printf("\n");
        printf("Problem %d:\n", ++T);
        for(int i = 0;i < n;i ++){ 
   
            cin>>x>>y;
            polygons[i].x = x,polygons[i].y = y;
        }
        for(int i = 0;i < m;i ++){ 
   
            cin>>x>>y;
            Point pt(x,y);
            if(Point_In_Polygon(pt,polygons,n))cout<<"Within"<<endl;
            else cout<<"Outside"<<endl;
        }
    }
    return 0;
}

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请联系我们举报,一经查实,本站将立刻删除。

发布者:全栈程序员-站长,转载请注明出处:https://javaforall.net/169110.html原文链接:https://javaforall.net

(0)
全栈程序员-站长的头像全栈程序员-站长


相关推荐

  • DSP开发,使用CCS软件建立工程以及烧录

    DSP开发,使用CCS软件建立工程1概述1.1资源概述2工程建立步骤1概述实验的代码已经上传。1.1资源概述开发板:普中DSP开发板CCS版本:6.1.3主控芯片型号:TMS320F283352工程建立步骤1,在需要建立的工程的文件夹内新建一个工程文件夹。2,打开CCS软件,在弹出的Workspace内指向刚才建立的文件夹。3,建立新工程4,填入工程的相关信息5,新建后的工程,只包含两个文件以及一个文件夹,系统必须的头文件,RAM连接的配置文件6,在工程文件

    2022年4月6日
    676
  • jQuery 模板 tmpl 用法「建议收藏」

    jQuery 模板 tmpl 用法「建议收藏」昨晚无意中发现一个有趣的jQuery插件.tmpl(),其文档在这里。官方解释对该插件的说明:将匹配的第一个元素作为模板,render指定的数据,签名如下:.tmpl([data,][options])其中参数data的用途很明显:用于render的数据,可以是任意js类型,包括数组和对象。options一般情况下都是

    2022年6月18日
    32
  • 线程池参数如何设置?

    线程池参数如何设置?前言着计算机行业的飞速发展,摩尔定律逐渐失效,多核CPU成为主流。使用多线程并行计算逐渐成为开发人员提升服务器性能的基本武器。J.U.C提供的线程池:ThreadPoolExecutor类,帮助开发人员管理线程并方便地执行并行任务。了解并合理使用线程池,是一个开发人员必修的基本功。线程池参数配置方案显得十分重要。一、参数设置的传统方案1.线程池中执行的任务性质。计算密集型的任务比较占cpu,所以一般线程数设置的大小等于或者略微大于cpu的核数;但IO型任务主要时间消耗在IO等待上,cpu压

    2022年5月31日
    36
  • React 构建单页应用方法与实例

    React 构建单页应用方法与实例

    2021年9月15日
    40
  • jsonschema校验json数据_接口校验不通过

    jsonschema校验json数据_接口校验不通过何为Json-SchemaJson-schema是描述你的JSON数据格式;JSON模式(应用程序/模式+JSON)有多种用途,其中之一就是实例验证。验证过程可以是交互式或非交互式的。例如,应用程序可以使用JSON模式来构建用户界面使互动的内容生成除了用户输入检查或验证各种来源获取的数据。(来自百度百科)相关jar包<dependency><groupId>com.github.fge</groupId><artifactId&g

    2022年9月7日
    0
  • SVM和logistic regression的一些对比

    SVM和logistic regression的一些对比

    2021年6月15日
    109

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

关注全栈程序员社区公众号