大学微积分函数的极限_微积分基本公式求极限

大学微积分函数的极限_微积分基本公式求极限LaTeX语法参考:http://www.mohu.org/info/lshort-cn.pdf第一讲:函数实数与数轴,实数集(区间、邻域)。有界集与确界。函数及常用函数(函数三要素、数列(整标函数)、基本初等函数、初等函数)。【分段函数是否一定非初等;y​​=&Negati

大家好,又见面了,我是你们的朋友全栈君。如果您正在找激活码,请点击查看最新教程,关注关注公众号 “全栈程序员社区” 获取激活教程,可能之前旧版本教程已经失效.最新Idea2022.1教程亲测有效,一键激活。

Jetbrains全系列IDE使用 1年只要46元 售后保障 童叟无欺

LaTeX语法参考:http://www.mohu.org/info/lshort-cn.pdf

第一讲:函数

  1. 实数与数轴,实数集(区间、邻域)。
  2. 有界集与确界。
  3. 函数及常用函数(函数三要素、数列(整标函数)、基本初等函数、初等函数)。

    【分段函数是否一定非初等; y ​​ = ​​ ∣ x ∣ y\!\!=\!\! \left| {x} \right| y=x是初等还是非初等;复合函数举例;】

  4. 坐标系(直角坐标系、极坐标系)。

第二讲:数列极限的概念

  1. 曲边三角形求面积。
  2. ε − N \varepsilon-N εN语言( U ˚ ( x 0 , ε ) \mathring{U}(x_0,\varepsilon ) U˚(x0,ε)内有无穷多个函数值且 ε \varepsilon ε可任意小)。
  3. 极限定义: lim ⁡ n → ∞ x n &NegativeThinSpace; = &NegativeThinSpace; A ⟺ ∀ ε &gt; &NegativeThinSpace; 0 , ∃ N , s . t 当 n &gt; N 时 , 有 ∣ x n &NegativeThinSpace; − &NegativeThinSpace; A ∣ &lt; ε . \lim_{n\to \infty} x_n\!=\!A\Longleftrightarrow \forall \varepsilon&gt;\!0, \exist N, s.t当n&gt;N时,有\left| {x_n\!-\!A} \right|&lt;\varepsilon. nlimxn=Aε>0,N,s.tn>N,xnA<ε.只能用来判断A是否是极限,而不能用来求极限。
    【例题1】:证明 lim ⁡ n → ∞ 1 n = 0. \lim_{n\to \infty}{1\over n} =0. nlimn1=0.
    【例题2】:证明 lim ⁡ n → ∞ a n = 1. ( a &gt; 1 ) \lim_{n\to \infty}{\sqrt[n]{a}}=1.(a&gt;1) nlimna
    =
    1.(a>1)

    【思考1】:取N的值的时候,取整函数后面不加1行不行?(用极限定义证明极限就是要找到合题的N,找到即可,不要求找到的N为可能的最小值)。
    【例题3】:证明(不易求解关于n的不等式的情况) lim ⁡ n → ∞ n n = 1. \lim_{n\to \infty}\sqrt[n]{n}=1. nlimnn
    =
    1.
    【例题4】:证明 ∀ ε ∈ ( 0 , 1 ) , ∃ N , 使 当 n ≥ N 时 , 恒 有 ∣ x n − A ∣ ≤ ε . \forall \varepsilon \in (0,1),\exist N,使当n\geq N时,恒有\left|{x_n-A}\right|\leq \varepsilon. ε(0,1),N,使nN,xnAε. lim ⁡ n → ∞ x n = A . \lim_{n\to \infty}x_n=A. nlimxn=A.的充要条件。

第三讲:数列极限的性质与运算

  1. 数列极限具有唯一性(反证法)、保序性、有界性(奇偶数子列极限不同推不收敛)。
  2. 数列极限的四则运算(公式变形、分子有理化、)。

第三讲:数列极限的收敛准则

  1. 数列极限的收敛准则:夹挤准则(放缩极限过程中不起作用的部分;丢弃部分和放缩部分因式 ∣ x n ∣ &NegativeThinSpace; → &NegativeThinSpace; 0 ⇔ x n &NegativeThinSpace; → &NegativeThinSpace; 0 \left|{x_n}\right|\!\to \!0\Leftrightarrow x_n\! \to \!0 xn0xn0)、单调有界准则
    【例题1】单调有界准则求(证明)极限

第五讲:函数极限的概念、性质与运算

  1. 函数极限定义的6中趋向。
  2. 函数极限的性质(唯一性、局部有界性、保序性)。
  3. 函数极限的运算(四则运算、复合运算)。
    【思考1】:函数极限复合运算中 u ≠ u 0 u\ne u_0 u̸=u0必要性
  4. 函数极限的定式:
    lim ⁡ x → x 0 f ( x ) = f ( x 0 ) , 其 中 f ( x ) 为 基 本 初 等 函 数 或 初 等 函 数 。 \lim_{x\to x_0}f(x)=f(x_0),其中f(x)为基本初等函数或初等函数。 xx0limf(x)=f(x0),f(x)
    【思考1】: lim ⁡ x → ∞ e x 是 否 存 在 ? \lim_{x \to \infty}e^x是否存在? xlimex

第六讲:两个重要极限

  1. lim ⁡ x → 0 s i n x x = 1 , 其 中 x 可 广 义 化 . \lim_{x \to 0}{sinx \over x}=1,其中x可广义化. x0limxsinx=1,x广.
  2. lim ⁡ x → 0 ( 1 + x ) 1 x = e , 其 中 x 可 广 义 化 . \lim_{x\to 0}{(1+x)^{1\over x}}=e,其中x可广义化. x0lim(1+x)x1=e,x广.
  3. 【结论1】:幂指函数可直接带入求极限。

第七讲:无穷小

  1. 无穷大量与无界量的区别
  2. 无穷小的性质:有限加和仍为无穷小;乘以有界量仍为无穷小; lim ⁡ f ( x ) = lim ⁡ g ( x ) ⟺ f ( x ) = g ( x ) + α , 其 中 α 为 极 限 过 程 中 的 无 穷 小 . \lim{f(x)}=\lim{g(x)}\Longleftrightarrow f(x)=g(x)+\alpha,\\其中\alpha 为极限过程中的无穷小. limf(x)=limg(x)f(x)=g(x)+α,α.
    【例题1】:已知函数极限求其参数
    设 lim ⁡ x → + ∞ ( 1 + e x 1 − e x − a x − b ) = 0 , 求 a , b . 设\lim_{x \to +\infty}{( { {1+e^x}\over {1-e^x} } -ax-b)}=0,求a,b. x+lim(1ex1+exaxb)=0,a,b.
  3. 无穷小的比较:阶数、高阶、低阶、等价。
  4. 【定理】:等价无穷小代换。
    【例题1】:算极限过程中cosx不熟悉换元变成sinx

第八讲:连续

  1. 连续函数的性质:四则运算、复合运算、单调连续函数的反函数及初等函数的连续性。
    【疑问1】:感觉不对的题
  2. 闭区间连续函数的性质:有界性、最值原理、零点定理、介值定理。
版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请联系我们举报,一经查实,本站将立刻删除。

发布者:全栈程序员-站长,转载请注明出处:https://javaforall.net/169764.html原文链接:https://javaforall.net

(0)
全栈程序员-站长的头像全栈程序员-站长


相关推荐

  • 锂电池充电IC_锂电池充电器电路

    锂电池充电IC_锂电池充电器电路HE4484E是一款5VUSB适配器输入,高精度双节锂离子电池充电管理芯片。具有0V充电功能,涓流充电、恒流充电、恒压充电和自动截止、自动再充等一套完整充电循环的充电管理芯片。芯片内部特设9V抗浪涌,芯片应用更安全可靠。HE4484E标准浮充电压为8.40V,其底部带有散热片接地的ESOP8封装,极其精简的外部器件,使得HE4484E成为便携式双节锂锂电池充电应用的理想选择。HE4484E适合USB适配器或其它5V适配器工作,极大降低了外部配件成本。当输入电压(USB电源或AC适配器)被拿掉时,HE4484

    2022年10月6日
    1
  • 基于Intel PXA272的Bootloader的设计与实现

    基于Intel PXA272的Bootloader的设计与实现

    2021年7月28日
    67
  • String、StringBuffer与StringBuilder之间区别

    String、StringBuffer与StringBuilder之间区别String StringBuffer StringBuilder String的值是不可变的,这就导致每次对String的操作都会生成新的String对象,不仅效率低下,而且浪费大量优先的内存空间 StringBuffer是可变类,和线程安全的字符串操作类,任何对它指向的字符串的操作都不会产生新的对象。每个StringBuffer对象都有一定的缓冲区…

    2022年6月28日
    27
  • 谷歌地球怎么画路线图_消防路线图怎么画

    谷歌地球怎么画路线图_消防路线图怎么画1.首先需要将GPSDebug.log打开。打开方法 :点我传送。 2.使用NMEA2KMZ程序将LOG中的Nmealog开头的log转换成KMZ文件,会生成一个日期的文件。3.直接将生成的文件放到GoogleEarth中就行了。当两条路线对比的时候,还可以调整路线的颜色。注: KMZ文件是将GPS每秒位置点连成轨迹,比较精确的反映了测试轨迹。

    2022年9月19日
    3
  • 利用远程外网服务器搭建代理服务器[通俗易懂]

    利用远程外网服务器搭建代理服务器[通俗易懂]安装CCProxy官网地址:http://www.ccproxy.com/下载安装即可,软件使用很简单。配置CCProxy配置端口基本上不需要配置什么,只要你将默认的端口改为你的端口号就行,不改可能会被其他软件扫描到。新增账号新增账号支持访问,具体权限可以看说明。选择你的远程服务器特别说明:你的服务器一定要配置安全组,否则端口无法访问。通过服务器中的teln…

    2022年5月1日
    169
  • datax(24):远程调试datax

    datax(24):远程调试datax一、datax开启远程debug1、环境本地:win10,idea专业版2020.3,datax3.0远程:CentOS6.5,datax3.02、效果3、步骤3.1远程开启debug/apps/datax/bin/datax.py/apps/datax/job/job.json-d即在后面添加-d即可,默认端口为9999,也可以自行修改datax.py文件第35行REMOTE_DEBUG_CONFIG=”-Xdebug-Xrunjdwp:transport=dt

    2022年5月17日
    127

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

关注全栈程序员社区公众号