pandas fillna详解

pandas fillna详解pandas中补全nan具体的参数Series.fillna(self,value=None,method=None,axis=None,inplace=False,limit=None,downcast=None,**kwargs)[source]参数: value:scalar,dict,Series,orDataFrameValuetouset…

大家好,又见面了,我是你们的朋友全栈君。如果您正在找激活码,请点击查看最新教程,关注关注公众号 “全栈程序员社区” 获取激活教程,可能之前旧版本教程已经失效.最新Idea2022.1教程亲测有效,一键激活。

Jetbrains全系列IDE使用 1年只要46元 售后保障 童叟无欺

pandas中补全nan


具体的参数
Series.fillna(self, value=None, method=None, axis=None, inplace=False, limit=None, downcast=None, **kwargs)[source]


参数:	
value : scalar, dict, Series, or DataFrame
Value to use to fill holes (e.g. 0), alternately a dict/Series/DataFrame of values specifying which value to use for each index (for a Series) or column (for a DataFrame). Values not in the dict/Series/DataFrame will not be filled. This value cannot be a list.

其他的参数:

method : { 
   ‘backfill’, ‘bfill’, ‘pad’, ‘ffill’, None}, default None
Method to use for filling holes in reindexed Series pad / ffill: propagate last valid observation forward to next valid backfill / bfill: use next valid observation to fill gap.

axis : { 
   0 or ‘index’}
Axis along which to fill missing values.

inplace : bool, default False
If True, fill in-place. Note: this will modify any other views on this object (e.g., a no-copy slice for a column in a DataFrame).

limit : int, default None
If method is specified, this is the maximum number of consecutive NaN values to forward/backward fill. In other words, if there is a gap with more than this number of consecutive NaNs, it will only be partially filled. If method is not specified, this is the maximum number of entries along the entire axis where NaNs will be filled. Must be greater than 0 if not None.

downcast : dict, default is None
A dict of item->dtype of what to downcast if possible, or the string ‘infer’ which will try to downcast to an appropriate equal type (e.g. float64 to int64 if possible).

Returns:	
Series
Object with missing values filled.

例子:

>>> df = pd.DataFrame([[np.nan, 2, np.nan, 0],
...                    [3, 4, np.nan, 1],
...                    [np.nan, np.nan, np.nan, 5],
...                    [np.nan, 3, np.nan, 4]],
...                   columns=list('ABCD'))
>>> df
     A    B   C  D
0  NaN  2.0 NaN  0
1  3.0  4.0 NaN  1
2  NaN  NaN NaN  5
3  NaN  3.0 NaN  4

补零

>>> df.fillna(0)
    A   B   C   D
0   0.0 2.0 0.0 0
1   3.0 4.0 0.0 1
2   0.0 0.0 0.0 5
3   0.0 3.0 0.0 4

向前补充,按列 ffill forward fill

>>> df.fillna(method='ffill')
    A   B   C   D
0   NaN 2.0 NaN 0
1   3.0 4.0 NaN 1
2   3.0 4.0 NaN 5
3   3.0 3.0 NaN 4

改变方向 axis = 1按行的方向

>>> df.fillna(method='ffill',axis=1)
 	A	B	C	D
0	NaN	2.0	2.0	0.0
1	3.0	4.0	4.0	1.0
2	NaN	NaN	NaN	5.0
3	NaN	3.0	3.0	4.0

按字典补充,列名:value

>>> values = { 
   'A': 0, 'B': 1, 'C': 2, 'D': 3}
>>> df.fillna(value=values)
    A   B   C   D
0   0.0 2.0 2.0 0
1   3.0 4.0 2.0 1
2   0.0 1.0 2.0 5
3   0.0 3.0 2.0 4

用limit限制补充的个数

>>> df.fillna(value=values, limit=1)
    A   B   C   D
0   0.0 2.0 2.0 0
1   3.0 4.0 NaN 1
2   NaN 1.0 NaN 5
3   NaN 3.0 NaN 4

实际中常用的按均值补充。

for column in list(df.columns[df.isnull().sum() > 0]):
    mean_val = df[column].mean()
    df[column].fillna(mean_val, inplace=True)

这是用来查看需要补充的列

list(df.columns[df.isnull().sum() > 0])
版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请联系我们举报,一经查实,本站将立刻删除。

发布者:全栈程序员-站长,转载请注明出处:https://javaforall.net/170010.html原文链接:https://javaforall.net

(0)
全栈程序员-站长的头像全栈程序员-站长


相关推荐

  • 达梦数据库同步部署方案「建议收藏」

    达梦数据库同步部署方案「建议收藏」达梦数据复制(DATAREPLICATION)是一个分担系统访问压力、加快异地访问响应速度、提高数据可靠性的解决方案。将一个服务器实例上的数据变更复制到另外的服务器实例。可以用于解决大、中型应用中出现的因来自不同地域、不同部门、不同类型的数据访问请求导致数据库服务器超负荷运行、网络阻塞、远程用户的数据响应迟缓的问题。

    2022年10月15日
    6
  • exits函数「建议收藏」

    exits函数「建议收藏」updateempsetsal=sal*1.2whereexists(select1fromdeptwheredeptno=emp.deptnoandloc=’DALLAS’); 等同于updateempasetsal=sal*1.2whereexists(select1fromdeptbwhereb.deptno=a.deptnoa

    2025年7月21日
    2
  • Java中next()和nextLine()区别及用法「建议收藏」

    Java中next()和nextLine()区别及用法「建议收藏」今天在项目之余,到杭电上刷了一道题,那道题是1062题,程序本身不是难,但是在里面实现过程中,突然发现用的Scanner类进行输入的,用到了next和nextLine这两个方法,在输入过程中也遇到一些问题,接下来进行讲述自己遇到的问题,以及如何解决的杭电1062题目:TextReverseProblemDescriptionIgnatiuslike

    2022年5月22日
    38
  • stardict and dictionaries

    stardict and dictionaries

    2021年5月3日
    160
  • Jlink或者stlink用于SWD接口下载程序

    Jlink或者stlink用于SWD接口下载程序最近要使用stm32f103c8t6最小系统板,直接ISP串口下载程序太麻烦,就想着使用swd接口来调试。结果:通过SWD接口下载程序成功,但调试失败,还不知原因,会的的人麻烦交流一下。SWD接口:3.3VDIO(数据)CLK(时钟)GND1.首先声明jlink和stlink都有jtag和swd调试功能。jlink接口如下:如图,我使用的就是VCC…

    2022年4月25日
    270
  • linux hexdump命令_hexdump用法

    linux hexdump命令_hexdump用法Linux中hexdump命令简介hexdump主要用来查看“二进制”文件的十六进制编码。*注意:它能够查看任何文件,不限于与二进制文件。*语法hexdump[选项][文件]…选项-nlength:格式化输出文件的前length个字节-C:输出规范的十六进制和ASCII码-b:单字节八进制显示-c:单字节字符显示-d:双字节十进制显示-o:双字节八进制显示-…

    2022年4月19日
    184

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

关注全栈程序员社区公众号