pandas中使用fillna函数填充NaN值「建议收藏」

pandas中使用fillna函数填充NaN值「建议收藏」1.参数解析1.1inplace参数取值:True、FalseTrue:直接修改原对象False:创建一个副本,修改副本,原对象不变(缺省默认)1.2method参数取值:{‘pad’,‘ffill’,‘backfill’,‘bfill’,None},defaultNonepad/ffill:用前一个非缺失值去填充该缺失值backfill/bfill:用下一个非缺失值填充该缺失值None:指定一个值去替换缺失值(缺省默认这种方式)1.3limit参数:限制

大家好,又见面了,我是你们的朋友全栈君。如果您正在找激活码,请点击查看最新教程,关注关注公众号 “全栈程序员社区” 获取激活教程,可能之前旧版本教程已经失效.最新Idea2022.1教程亲测有效,一键激活。

Jetbrains全系列IDE使用 1年只要46元 售后保障 童叟无欺

1. 参数解析

1.1 inplace参数

取值:True、False

True:直接修改原对象

False:创建一个副本,修改副本,原对象不变(缺省默认)

1.2 method参数

取值 : {‘pad’, ‘ffill’,‘backfill’, ‘bfill’, None}, default None

pad/ffill:用前一个非缺失值去填充该缺失值

backfill/bfill:用下一个非缺失值填充该缺失值

None:指定一个值去替换缺失值(缺省默认这种方式)

1.3 limit参数:

限制填充个数

1.4 axis参数

修改填充方向

补充

isnull 和 notnull 函数用于判断是否有缺失值数据
isnull:缺失值为True,非缺失值为False
notnull:缺失值为False,非缺失值为True

2. 代码实例

#导包
import pandas as pd
import numpy as np
from numpy import nan as NaN
df1=pd.DataFrame([[1,2,3],[NaN,NaN,2],[NaN,NaN,NaN],[8,8,NaN]])
df1

代码结果:

     0    1    2
0  1.0  2.0  3.0
1  NaN  NaN  2.0
2  NaN  NaN  NaN
3  8.0  8.0  NaN

2.1 常数填充

2.1.1 用常数填充

#1.用常数填充
print (df1.fillna(100))
print ("-----------------------")
print (df1)

运行结果:

       0      1      2
0    1.0    2.0    3.0
1  100.0  100.0    2.0
2  100.0  100.0  100.0
3    8.0    8.0  100.0
-----------------------
     0    1    2
0  1.0  2.0  3.0
1  NaN  NaN  2.0
2  NaN  NaN  NaN
3  8.0  8.0  NaN

2.1.2 用字典填充

第key列的NaN用key对应的value值填充

df1.fillna({ 
   0:10,1:20,2:30})

运行结果:

      0     1     2
0   1.0   2.0   3.0
1  10.0  20.0   2.0
2  10.0  20.0  30.0
3   8.0   8.0  30.0

2.2 使用inplace参数

print (df1.fillna(0,inplace=True))
print ("-------------------------")
print (df1)

运行结果:

在这里插入代码片

2.3 使用method参数

1.method = 'ffill'/'pad':用前一个非缺失值去填充该缺失值

df2 = pd.DataFrame(np.random.randint(0,10,(5,5)))
df2.iloc[1:4,3] = None
df2.iloc[2:4,4] = None
print(df2)
print ("-------------------------")
print(df2.fillna(method='ffill'))

运行结果:

   0  1  2    3    4
0  8  4  4  5.0  6.0
1  5  2  8  NaN  7.0
2  6  3  1  NaN  NaN
3  5  4  9  NaN  NaN
4  6  5  4  6.0  9.0
-------------------------
   0  1  2    3    4
0  8  4  4  5.0  6.0
1  5  2  8  5.0  7.0
2  6  3  1  5.0  7.0
3  5  4  9  5.0  7.0
4  6  5  4  6.0  9.0

2.method = ‘bflii’/‘backfill’:用下一个非缺失值填充该缺失值

df2 = pd.DataFrame(np.random.randint(0,10,(5,5)))
df2.iloc[1:4,3] = None
df2.iloc[2:4,4] = None
print(df2)
print ("-------------------------")
print(df2.fillna(method='bfill'))

运行结果:

   0  1  2    3    4
0  1  0  4  1.0  3.0
1  4  6  4  NaN  2.0
2  4  9  2  NaN  NaN
3  9  7  3  NaN  NaN
4  6  1  3  5.0  5.0
-------------------------
   0  1  2    3    4
0  1  0  4  1.0  3.0
1  4  6  4  5.0  2.0
2  4  9  2  5.0  5.0
3  9  7  3  5.0  5.0
4  6  1  3  5.0  5.0

2.4 使用limit参数

用下一个非缺失值填充该缺失值且每列只填充2个

df2 = pd.DataFrame(np.random.randint(0,10,(5,5)))
df2.iloc[1:4,3] = None
df2.iloc[2:4,4] = None
print(df2)
print ("-------------------------")
print(df2.fillna(method='bfill', limit=2))

运行结果:

   0  1  2    3    4
0  2  0  4  4.0  0.0
1  7  9  9  NaN  1.0
2  1  7  3  NaN  NaN
3  8  5  8  NaN  NaN
4  8  6  2  4.0  4.0
-------------------------
   0  1  2    3    4
0  2  0  4  4.0  0.0
1  7  9  9  NaN  1.0
2  1  7  3  4.0  4.0
3  8  5  8  4.0  4.0
4  8  6  2  4.0  4.0

2.5 使用axis参数

axis=0 对每列数据进行操作
axis=1 对每行数据进行操作

df2 = pd.DataFrame(np.random.randint(0,10,(5,5)))
df2.iloc[1:4,3] = None
df2.iloc[2:4,4] = None
print(df2.fillna(method="ffill", limit=1, axis=1))

运行结果:

    0    1    2    3    4
0  0.0  4.0  9.0  7.0  2.0
1  6.0  5.0  0.0  0.0  3.0
2  8.0  8.0  8.0  8.0  NaN
3  5.0  5.0  6.0  6.0  NaN
4  7.0  5.0  7.0  4.0  1.0

还有一些pandas的基础运算请参考这篇文章->pandas | DataFrame基础运算以及空值填充

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请联系我们举报,一经查实,本站将立刻删除。

发布者:全栈程序员-站长,转载请注明出处:https://javaforall.net/170012.html原文链接:https://javaforall.net

(0)
全栈程序员-站长的头像全栈程序员-站长


相关推荐

  • strtus中Interceptor和AbstractInterceptor区别「建议收藏」

    strtus中Interceptor和AbstractInterceptor区别「建议收藏」strtus中Interceptor和AbstractInterceptor区别Interceptor类publicinterfaceInterceptorextendsSerializable{voiddestroy();voidinit();Stringintercept(A…

    2022年5月15日
    35
  • 数据结构与算法(1)

    数据结构与算法(1)

    2021年11月12日
    54
  • 基于ssm酒店管理系统的毕业设计_酒店管理系统

    基于ssm酒店管理系统的毕业设计_酒店管理系统开发工具(eclipse/idea):eclipse4.5/4.8或者idea2018,jdk1.8数据库:mysql功能模块:登录界面可以选择普通账号登录,酒店管理员登录和系统管理员登录。普通账号注册功能:注册时需填写用户名、密码、姓名、性别、邮箱等个人信息登录功能:登录已经注册过的账号,没注册的无法登录忘记密码功能:登录时忘记密码可通过填写姓名,邮箱查询密码。预订酒店:可以选择预订众多酒店其中的一个酒店的一个房间,可以选择日期住宿管理:可以看到自己是否预订成功,预订成功则有

    2022年9月24日
    0
  • 知乎收藏数最高的1000个回答

    掃描了知乎兩千五百萬篇答案,統計出了“收藏數”最高的1000篇:同系列一:知乎收藏数最高的1000个回答-陈鹏举的文章-知乎专栏同系列二:知乎关注人数最高的1000个问题-陈鹏举的文章-知乎专栏同系列三:知乎关注人数最高的1000个收藏夾-陈鹏举的文章-知乎专栏同系列四:知乎关注人数最高的1000个專欄-陈鹏举的文章-知乎专栏哪些知识技能一定

    2022年4月9日
    61
  • Java下拼接运行动态SQL语句

    Java下拼接运行动态SQL语句

    2022年2月4日
    66
  • Spock单元测试框架使用详解「建议收藏」

    Spock单元测试框架使用详解「建议收藏」Spock(Spock官网:http://spockframework.org/)作为java和Groovy测试一种表达的规范语言,其参考了Junit、Groovy、jMock、Scala等众多语言的优点,并采用Groovy作为其语法,目前能够在绝大多数的集成开发环境(如eclipse,Intellij Ieda),构建工具(如Maven,gradle)等场景运行。Spock单元测试相对于传统的junit、JMockito、EsayMock、Mockito、PowerMock,由于使用了Groovy作为语法

    2022年6月17日
    62

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

关注全栈程序员社区公众号