pandas中使用fillna函数填充NaN值「建议收藏」

pandas中使用fillna函数填充NaN值「建议收藏」1.参数解析1.1inplace参数取值:True、FalseTrue:直接修改原对象False:创建一个副本,修改副本,原对象不变(缺省默认)1.2method参数取值:{‘pad’,‘ffill’,‘backfill’,‘bfill’,None},defaultNonepad/ffill:用前一个非缺失值去填充该缺失值backfill/bfill:用下一个非缺失值填充该缺失值None:指定一个值去替换缺失值(缺省默认这种方式)1.3limit参数:限制

大家好,又见面了,我是你们的朋友全栈君。如果您正在找激活码,请点击查看最新教程,关注关注公众号 “全栈程序员社区” 获取激活教程,可能之前旧版本教程已经失效.最新Idea2022.1教程亲测有效,一键激活。

Jetbrains全系列IDE使用 1年只要46元 售后保障 童叟无欺

1. 参数解析

1.1 inplace参数

取值:True、False

True:直接修改原对象

False:创建一个副本,修改副本,原对象不变(缺省默认)

1.2 method参数

取值 : {‘pad’, ‘ffill’,‘backfill’, ‘bfill’, None}, default None

pad/ffill:用前一个非缺失值去填充该缺失值

backfill/bfill:用下一个非缺失值填充该缺失值

None:指定一个值去替换缺失值(缺省默认这种方式)

1.3 limit参数:

限制填充个数

1.4 axis参数

修改填充方向

补充

isnull 和 notnull 函数用于判断是否有缺失值数据
isnull:缺失值为True,非缺失值为False
notnull:缺失值为False,非缺失值为True

2. 代码实例

#导包
import pandas as pd
import numpy as np
from numpy import nan as NaN
df1=pd.DataFrame([[1,2,3],[NaN,NaN,2],[NaN,NaN,NaN],[8,8,NaN]])
df1

代码结果:

     0    1    2
0  1.0  2.0  3.0
1  NaN  NaN  2.0
2  NaN  NaN  NaN
3  8.0  8.0  NaN

2.1 常数填充

2.1.1 用常数填充

#1.用常数填充
print (df1.fillna(100))
print ("-----------------------")
print (df1)

运行结果:

       0      1      2
0    1.0    2.0    3.0
1  100.0  100.0    2.0
2  100.0  100.0  100.0
3    8.0    8.0  100.0
-----------------------
     0    1    2
0  1.0  2.0  3.0
1  NaN  NaN  2.0
2  NaN  NaN  NaN
3  8.0  8.0  NaN

2.1.2 用字典填充

第key列的NaN用key对应的value值填充

df1.fillna({ 
   0:10,1:20,2:30})

运行结果:

      0     1     2
0   1.0   2.0   3.0
1  10.0  20.0   2.0
2  10.0  20.0  30.0
3   8.0   8.0  30.0

2.2 使用inplace参数

print (df1.fillna(0,inplace=True))
print ("-------------------------")
print (df1)

运行结果:

在这里插入代码片

2.3 使用method参数

1.method = 'ffill'/'pad':用前一个非缺失值去填充该缺失值

df2 = pd.DataFrame(np.random.randint(0,10,(5,5)))
df2.iloc[1:4,3] = None
df2.iloc[2:4,4] = None
print(df2)
print ("-------------------------")
print(df2.fillna(method='ffill'))

运行结果:

   0  1  2    3    4
0  8  4  4  5.0  6.0
1  5  2  8  NaN  7.0
2  6  3  1  NaN  NaN
3  5  4  9  NaN  NaN
4  6  5  4  6.0  9.0
-------------------------
   0  1  2    3    4
0  8  4  4  5.0  6.0
1  5  2  8  5.0  7.0
2  6  3  1  5.0  7.0
3  5  4  9  5.0  7.0
4  6  5  4  6.0  9.0

2.method = ‘bflii’/‘backfill’:用下一个非缺失值填充该缺失值

df2 = pd.DataFrame(np.random.randint(0,10,(5,5)))
df2.iloc[1:4,3] = None
df2.iloc[2:4,4] = None
print(df2)
print ("-------------------------")
print(df2.fillna(method='bfill'))

运行结果:

   0  1  2    3    4
0  1  0  4  1.0  3.0
1  4  6  4  NaN  2.0
2  4  9  2  NaN  NaN
3  9  7  3  NaN  NaN
4  6  1  3  5.0  5.0
-------------------------
   0  1  2    3    4
0  1  0  4  1.0  3.0
1  4  6  4  5.0  2.0
2  4  9  2  5.0  5.0
3  9  7  3  5.0  5.0
4  6  1  3  5.0  5.0

2.4 使用limit参数

用下一个非缺失值填充该缺失值且每列只填充2个

df2 = pd.DataFrame(np.random.randint(0,10,(5,5)))
df2.iloc[1:4,3] = None
df2.iloc[2:4,4] = None
print(df2)
print ("-------------------------")
print(df2.fillna(method='bfill', limit=2))

运行结果:

   0  1  2    3    4
0  2  0  4  4.0  0.0
1  7  9  9  NaN  1.0
2  1  7  3  NaN  NaN
3  8  5  8  NaN  NaN
4  8  6  2  4.0  4.0
-------------------------
   0  1  2    3    4
0  2  0  4  4.0  0.0
1  7  9  9  NaN  1.0
2  1  7  3  4.0  4.0
3  8  5  8  4.0  4.0
4  8  6  2  4.0  4.0

2.5 使用axis参数

axis=0 对每列数据进行操作
axis=1 对每行数据进行操作

df2 = pd.DataFrame(np.random.randint(0,10,(5,5)))
df2.iloc[1:4,3] = None
df2.iloc[2:4,4] = None
print(df2.fillna(method="ffill", limit=1, axis=1))

运行结果:

    0    1    2    3    4
0  0.0  4.0  9.0  7.0  2.0
1  6.0  5.0  0.0  0.0  3.0
2  8.0  8.0  8.0  8.0  NaN
3  5.0  5.0  6.0  6.0  NaN
4  7.0  5.0  7.0  4.0  1.0

还有一些pandas的基础运算请参考这篇文章->pandas | DataFrame基础运算以及空值填充

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请联系我们举报,一经查实,本站将立刻删除。

发布者:全栈程序员-站长,转载请注明出处:https://javaforall.net/170012.html原文链接:https://javaforall.net

(0)
全栈程序员-站长的头像全栈程序员-站长


相关推荐

  • Django(41)详解异步任务框架Celery「建议收藏」

    Django(41)详解异步任务框架Celery「建议收藏」celery介绍Celery是由Python开发、简单、灵活、可靠的分布式任务队列,是一个处理异步任务的框架,其本质是生产者消费者模型,生产者发送任务到消息队列,消费者负责处理任务。Celery侧重

    2022年7月30日
    9
  • smb服务检测(smb应用)

     开源包,http://jcifs.samba.org/.复制一篇文章.用JAVA访问共享文件系统前言在Microsoft网络系统中,SMB(ServerMessageBlock,服务信息块)协议是WindowsforWorkgroup(WfWg)、Windows95、WindowsNT和LanManager用来实现共享局域网上

    2022年4月13日
    72
  • C51单片机实验——定时器实验

    C51单片机实验——定时器实验实验名称:单片机定时器实验实验环境:普中实验系统;KeilμVision4软件;实验目的:(1)掌握单片机定时器的原理和控制方法。(2)通过编程利用定时器实现定时功能,并利用该定时功能实现时钟分、秒的功能。硬件连线:P2^1口连接led1P2^3口连接led3P2^5口连接led5P2^7口连接led7实验主要代码:/********************************************************************************

    2022年7月26日
    6
  • pycharm30天试用到期_手机软件试用期到了如何继续使用

    pycharm30天试用到期_手机软件试用期到了如何继续使用关注Python联盟,下载永久补丁激活补丁下载地址:添加链接描述提取码:rkuf根据使用前必看文档中内容步骤操作即可。感谢Python联盟

    2025年7月18日
    52
  • java web的动静分离_Nginx+Tomcat动静分离架构

    java web的动静分离_Nginx+Tomcat动静分离架构Nginx+Tomcat动静分离架构Nginx+tomcat是目前主流的javaweb架构,Nginx动静分离简单来说就是把动态跟静态请求分开,不能理解成只是单纯的把动态页面和静态页面物理分离。严格意义上说应该是动态请求跟静态请求分开,可以理解成使用Nginx处理静态页面,Tomcat、Resin出来动态页面。动静分离从目前实现角度来讲大致分为两种,一种是纯粹的把静态文件独立成单独的域名,放在独…

    2022年5月20日
    70
  • python encoding=utf-8_python以utf8打印字符串

    python encoding=utf-8_python以utf8打印字符串之前写程序时也出现过类似错误,每次解决了到第二次遇见又忘了具体方法,这次记录一下。一、字符编码问题先介绍一下字符编码问题1.ASCLL与GB2312由于计算机是美国人发明的,因此,最早只有127个字符被编码到计算机里,也就是大小写英文字母、数字和一些符号,这个编码表被称为ASCII编码,比如大写字母A的编码是65,小写字母z的编码是122。但是要处理中文显然一个字节是不够的,至…

    2022年9月27日
    4

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

关注全栈程序员社区公众号