ubifs使能和禁止压缩_移植不成功胚胎去哪了

ubifs使能和禁止压缩_移植不成功胚胎去哪了我在用TI的dm368开发板,kernel是2.6.32.17,默认的flash文件系统是jffs2,但是jffs2在大分区下,mount速度很慢,而且占用ram较多,因此,我想使用ubifs看看性能是否会更好些。ubifs的原理和配置过程,很多网页都有介绍的,我给一个链接,大家可以看看,我就不转载了,我重点说我移植过程中遇到并解决的问题。http://bbs.chinaunix.net/

大家好,又见面了,我是你们的朋友全栈君。如果您正在找激活码,请点击查看最新教程,关注关注公众号 “全栈程序员社区” 获取激活教程,可能之前旧版本教程已经失效.最新Idea2022.1教程亲测有效,一键激活。

Jetbrains全系列IDE使用 1年只要46元 售后保障 童叟无欺

我在用TI的dm368开发板,kernel是2.6.32.17,默认的flash文件系统是jffs2,但是jffs2在大分区下,mount速度很慢,而且占用ram较多,因此,我想使用ubifs看看性能是否会更好些。

ubifs的原理和配置过程,很多网页都有介绍的,我给一个链接,大家可以看看,我就不转载了,我重点说我移植过程中遇到并解决的问题。

http://bbs.chinaunix.net/thread-1954881-1-1.html

 

kerne的配置很简单,2.6.32里面都有,选上并重新编译就好了。

ubiattach、ubimkvol等工具,TI的dvsdk里面自带了,能用,我就偷了个懒,没有重新编译。

 

很轻松的照着网页说明操作了下,mount 分区也成功了,复制文件也成功了,很高兴:)

ubiattach /dev/ubi_ctrl -m 3

ubimkvol  /dev/ubi0 -N rootfs -s 480MiB

mount -t ubifs  ubi0_0 /mnt/nand/ -o sync

但很快就遇到麻烦了,开发板关机重新启动,我再mout ubi文件系统就出错了,提示了一堆错误,而且分区是空的,之前复制的文件不见了。

问题如下:

ubiattach /dev/ubi_ctrl -m 3

UBI error: ubi_io_read: error -74while reading 64 bytes from PEB 1662:0, read 64 bytes

UBI error: ubi_io_read: error -74while reading 64 bytes from PEB 1663:0, read 64 bytes

 

为了分析问题,我把mtd和ubifs的debug log都打开了,看到了一些信息;

#define   EBADMSG           74   /* Not a data message */

              /*Nand returns -EBADMSG on ecc errors, but it returns

               * the data. For our userspace tools it isimportant

               * to dump areas with ecc errors !

               * For kernel internal usage it also mightreturn -EUCLEAN

               * to signal the caller that a bitflip hasoccured and has

               * been corrected by the ECC algorithm.

               * Userspace software which accesses NAND thisway

               * must be aware of the fact that it deals withNAND

               */

nand_do_read_ops

       stats= mtd->ecc_stats;

       if(mtd->ecc_stats.failed – stats.failed)

              return-EBADMSG;

  

nand_read_page_hwecc

              stat= chip->ecc.correct(mtd, p, &ecc_code[i], &ecc_calc[i]);

              if(stat < 0)

                     mtd->ecc_stats.failed++;

              else

                     mtd->ecc_stats.corrected+= stat;

看样子,应该是ECC出错了,可是我用的是硬件ECC校验,怎么可能几乎全部的page都出现ecc校验错误了呢?

 

root@dm368-evm:~#flash_eraseall  /dev/mtd3

root@dm368-evm:~# ubiattach/dev/ubi_ctrl -m 3

UBI: attaching mtd3 to ubi0

UBI: physical eraseblock size:   131072 bytes (128 KiB)

UBI: logical eraseblock size:    129024 bytes

UBI: smallest flash I/O unit:    2048

UBI: sub-page size:              512

UBI: VID header offset:          512 (aligned 512)

UBI: data offset:                2048

 

分析下UBI写数据的过程,

UBI DBG (pid 1484): ubi_io_write:write 512 bytes to PEB 57:0

int ubi_io_write(struct ubi_device*ubi, const void *buf, int pnum, int offset,

               int len)

       addr= (loff_t)pnum * ubi->peb_size + offset;

       err= ubi->mtd->write(ubi->mtd, addr, len, &written, buf);

在io_init函数中可以看到几个变量的赋值;

       ubi->peb_size   = ubi->mtd->erasesize;

       ubi->peb_count  = mtd_div_by_eb(ubi->mtd->size,ubi->mtd);

       ubi->flash_size= ubi->mtd->size;

从debug log来看,这里一次写了512字节,从某个block的起始page开始,offset是0;

那么到了nand mtd底层驱动,行为就是;

nand_write->nand_do_write_ops:

       subpage= column || (writelen & (mtd->writesize – 1));

这里,subpage就是writelen,512;

也可以得知一点,ubifs没有使用oob,这跟jffs2和yaffs2是不同的;

              /*Partial page write ? */

              if(unlikely(column || writelen < (mtd->writesize – 1))) {

                     cached= 0;

                     bytes= min_t(int, bytes – column, (int) writelen);

                     chip->pagebuf= -1;

                     memset(chip->buffers->databuf,0xff, mtd->writesize);

                     memcpy(&chip->buffers->databuf[column],buf, bytes);

                     wbuf= chip->buffers->databuf;

              }

              ret= chip->write_page(mtd, chip, wbuf, page, cached,

                                   (ops->mode == MTD_OOB_RAW));

下面是write_page函数的代码;

static int nand_write_page(structmtd_info *mtd, struct nand_chip *chip,

                        const uint8_t *buf, int page, int cached,int raw)

{

       intstatus;

 

       chip->cmdfunc(mtd,NAND_CMD_SEQIN, 0x00, page);

 

       if(unlikely(raw))

              chip->ecc.write_page_raw(mtd,chip, buf);

       else

              chip->ecc.write_page(mtd,chip, buf);

 

       /*

        * Cached progamming disabled for now, Not sureif its worth the

        * trouble. The speed gain is not veryimpressive. (2.3->2.6Mib/s)

        */

       cached= 0;

这里需要注意的就是raw,如果是MTD_OOB_RAW,那么不会做ECC校验,也不会把ECC码写入OOB;

如果是这样,在read的时候也必须指定是MTD_OOB_RAW,不需要ECC校验;否则,就会出现我们最开始看到的错误;

       if(mtd->ecc_stats.failed – stats.failed)

              return-EBADMSG;

 

那么,从这里的情况来看,我们可能已经找到出错的原因了;ubi使用了subpage write,而底层nand flash驱动实际上是不支持subpage write的,尽管ubi一次只写了512字节,但这个page的其他部分已经不能再次写入新的数据了。

 

从Nand_base.c(drivers\mtd\nand)来看,large page的nand flash,对subpage write的支持是不完善的,限制条件比较多,比如,不能是MLC的nand flash,不能用硬件ECC;

更严重的问题是代码存在缺陷,在写入部分data的时候,将其他部分的数据填充为0xff了,然后write整个page,并写入全部ecc码到oob,也许这就是前面ecc校验出错的原因吧。

nand_do_write_ops()

              /*Partial page write ? */

memset(chip->buffers->databuf, 0xff, mtd->writesize);

                     memcpy(&chip->buffers->databuf[column],buf, bytes);

因此,我想到的解决办法就是在nand驱动中禁止subpage write。

第一步,在chip options中增加NAND_NO_SUBPAGE_WRITE;

static struct davinci_nand_pdatadavinci_nand_data = {

       .options         = NAND_USE_FLASH_BBT|NAND_NO_SUBPAGE_WRITE,

然后重新编译下载kernel,但问题依旧;

root@dm368-evm:~# ubiattach/dev/ubi_ctrl -m 3

UBI: attaching mtd3 to ubi0

UBI: physical eraseblock size:   131072 bytes (128 KiB)

UBI: logical eraseblock size:    129024 bytes

UBI: smallest flash I/O unit:    2048

UBI: sub-page size:              512

UBI: VID header offset:          512 (aligned 512)

心想很奇怪,为什么 sub-page size还是512?

回头查看代码,想看看sub page size是怎样计算出来的,

 if (!(chip->options & NAND_NO_SUBPAGE_WRITE) &&
     !(chip->cellinfo & NAND_CI_CELLTYPE_MSK)) {

  switch(chip->ecc.steps) {

  case 2:
   mtd->subpage_sft = 1;
   break;
  case 4:
  case 8:
  case 16:
   mtd->subpage_sft = 2;
   break;
  }
 }
 chip->subpagesize = mtd->writesize >> mtd->subpage_sft;

可是我已经给options增加了NAND_NO_SUBPAGE_WRITE啊?有些怀疑,我就在此处加了打印log,果然是这里出了问题,

chip->options = 0x10101.

mtd->subpage_sft = 0.

chip->subpagesize = 512.

 

#define NAND_NO_SUBPAGE_WRITE    0x00000200

可是,这里的options 明明是不对的!那我设置的NAND_NO_SUBPAGE_WRITE在哪里丢掉了?

 

在下面的函数中有对chip->options赋值改变;

nand_get_flash_type()

              printk(KERN_INFO”nand_get_flash_type 1, chip->options = 0x%x.\n”,chip->options);

 

       /*Get chip options, preserve non chip based options */

       chip->options &= ~NAND_CHIPOPTIONS_MSK;

       printk(KERN_INFO”nand_get_flash_type 2, chip->options = 0x%x.\n”,chip->options);   

       chip->options|= type->options & NAND_CHIPOPTIONS_MSK;

       printk(KERN_INFO”nand_get_flash_type 3, chip->options = 0x%x.\n”,chip->options);

 

       /*

        * Set chip as a default. Board drivers canoverride it, if necessary

        */

       chip->options|= NAND_NO_AUTOINCR;

 

       /*Check if chip is a not a samsung device. Do not clear the

        * options for chips which are not having anextended id.

        */

       if(*maf_id != NAND_MFR_SAMSUNG && !type->pagesize)

              chip->options&= ~NAND_SAMSUNG_LP_OPTIONS;

       printk(KERN_INFO”nand_get_flash_type 4, chip->options = 0x%x.\n”,chip->options);

 

nand_get_flash_type 1,chip->options = 0x10200.

nand_get_flash_type 2,chip->options = 0x10000.

nand_get_flash_type 3,chip->options = 0x1011c.

nand_get_flash_type 4,chip->options = 0x10101.

 

问题出在这里,红色的代码!

/* Mask to zero out thechip options, which come from the id table */

#defineNAND_CHIPOPTIONS_MSK (0x0000ffff &~NAND_NO_AUTOINCR)

/* Chip can not autoincrement pages */

#define NAND_NO_AUTOINCR  0x00000001

 

找到问题了,解决办法就有了,注释掉红色的那行代码,就是他把NAND_NO_SUBPAGE_WRITE给丢掉了。

//chip->options &=~NAND_CHIPOPTIONS_MSK;

再重新编译下载kernel,问题搞定了!

再次启动开发板,加载ubi,一切正常了。

root@dm368-evm:/# ubiattach/dev/ubi_ctrl -m 3

UBI: attaching mtd3 to ubi0

UBI: physical eraseblock size:   131072 bytes (128 KiB)

UBI: logical eraseblock size:    126976 bytes

UBI: smallest flash I/O unit:    2048

UBI: VID header offset:          2048 (aligned 2048)

UBI: data offset:                4096

UBI: attached mtd3 to ubi0

UBI: MTD device name:            “filesystem1”

UBI: MTD device size:            512 MiB

UBI: number of good PEBs:        4096

UBI: number of bad PEBs:         0

UBI: max. allowed volumes:       128

UBI: wear-leveling threshold:    4096

UBI: number of internal volumes: 1

UBI: number of user volumes:     1

UBI: available PEBs:             3639

UBI: total number of reserved PEBs:457

UBI: number of PEBs reserved for badPEB handling: 40

UBI: max/mean erase counter: 2/1

UBI: image sequence number: 0

UBI: background thread”ubi_bgt0d” started, PID 1483

UBI device number 0, total 4096 LEBs(520093696 bytes, 496.0 MiB), available 3639 LEBs (462065664 bytes, 440.7 MiB),LEB size 126976 bytes (124.0 KiB)

 

root@dm368-evm:/# mount -tubifs  ubi0_0 /mnt/nand/ -o sync

UBIFS: mounted UBI device 0, volume0, name “rootfs”

UBIFS: file system size:   51171328 bytes (49972 KiB, 48 MiB, 403 LEBs)

UBIFS: journal size:       2539520 bytes (2480 KiB, 2 MiB, 20 LEBs)

UBIFS: media format:       w4/r0 (latest is w4/r0)

UBIFS: default compressor: lzo

UBIFS: reserved for root:  2416947 bytes (2360 KiB)

root@dm368-evm:/# df

Filesystem           1K-blocks      Used Available Use% Mounted on

/dev/root             39544232  16239820 21295632  43% /

none                      1024        24     1000   2% /dev

tmpfs                    16384        20    16364   0% /var/volatile

tmpfs                    21760         0    21760   0% /dev/shm

tmpfs                    16384         0    16384   0% /media/ram

ubi0_0                   45528      1528    41640   4% /mnt/nand

 

最后,总结下,就是要禁止nand flash驱动里面的subpage write,让 chip->subpagesize == mtd->writesize 就好了。

这是我的解决办法。如果有人要使用subpage write,那么一定要保证你的读写逻辑是正确的,要么不用ecc,要么各个subpage的ecc都应是正确的。

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请联系我们举报,一经查实,本站将立刻删除。

发布者:全栈程序员-站长,转载请注明出处:https://javaforall.net/170242.html原文链接:https://javaforall.net

(0)
全栈程序员-站长的头像全栈程序员-站长


相关推荐

  • pycharm2021.11激活码(JetBrains全家桶)

    (pycharm2021.11激活码)这是一篇idea技术相关文章,由全栈君为大家提供,主要知识点是关于2021JetBrains全家桶永久激活码的内容IntelliJ2021最新激活注册码,破解教程可免费永久激活,亲测有效,下面是详细链接哦~https://javaforall.net/100143.html1M3Q9SD5XW-eyJsa…

    2022年3月28日
    54
  • 稳定性测试怎么做_stata稳定性检验怎么做

    稳定性测试怎么做_stata稳定性检验怎么做稳定性对产品的重要性不言而喻。而作为质量保障,在稳定性测试方面的探索也在不断演化。记得两年前我们做稳定性测试还是基于恒定的压力,7*24小时长时间运行,关注的指标无非是吞吐量TPS的抖动、响应时间的变化趋势,以及各种资源是否泄露。稳定性测试的场景设计简单,和线上实际运行有较大的出入。带来的直接结果是稳定性测试发现的问题比较有限,做完之后仍然没有特别大的信心。图片那稳定性测试究竟该如何做?别人在怎么做?性能测试组今年在这方面做了一些思考和改进,虽然称不上很好的解决方案,但是通过努力比以前的做法还是有不少

    2022年9月9日
    0
  • ESlint 是什么? 有什么好处

    ESlint 是什么? 有什么好处ESlint是代码检查工具,用来检查你的代码是否符合指定的规范;写ESlint的好处是什么?

    2022年6月18日
    42
  • wireshark抓包使用教程

    wireshark抓包使用教程Wireshark是非常流行的网络封包分析软件,可以截取各种网络数据包,并显示数据包详细信息。常用于开发测试过程各种问题定位。本文主要内容包括:1、Wireshark软件下载和安装以及Wireshark主界面介绍。2、WireShark简单抓包示例。通过该例子学会怎么抓包以及如何简单查看分析数据包内容。3、Wireshark过滤器使用。通过过滤器可以筛选出想要分析的内容。包括按照协议过滤、端口和主机名过滤、数据包内容过滤。Wireshark软件安装软件下载路径:w…

    2022年9月6日
    2
  • 渗透测试工具——漏洞扫描工具

    渗透测试工具——漏洞扫描工具安全漏洞产生的原因技术原因软件系统复杂性提高,质量难于控制,安全性降低 公用模块的使用引发了安全问题经济原因“柠檬市场”效应——安全功能是最容易删减的部分环境原因从传统的封闭、静态和可控变为开放、动态和难控 攻易守难安全缺陷安全性缺陷是信息系统或产品自身“与生俱来”的特征,是其“固有成分”安全漏洞是与生俱来的系统设计缺陷Internet从设计时就缺乏安全的总体架构和设计 TCP/IP中的三阶段握手.软件源代码的急剧膨胀Windows951500万行

    2022年9月13日
    0
  • Heartbeat_塞尔比欧冠夺冠

    Heartbeat_塞尔比欧冠夺冠Heartbeat介绍一、Heartbeat作用通过它可以将资源(IP及程序服务等资源)从一台故障计算机快速转移到另一台运转正常的机器继续提供服务,在实际生产应用场景中,heartbeat的功能和另一个高可用开源软件keepalived有很多相同之处。二、Heartbeat工作原理通过修改配置文件,指定哪一台Heartbeat服务器作为主服务器,则另一台将自动成为备份服务器。然后在指定备

    2025年6月6日
    0

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

关注全栈程序员社区公众号