数据结构项目——二叉树实现

数据结构项目——二叉树实现案例分析:写出下面二叉树的先、中、后序遍历输出的结果:注:先自己推算,然后用程序验算。先序遍历的结果:A F H D C B J G E I K中序遍历的结果:D H C F J B G A I E K后序遍历的结果:D C H J G B F I K E A代码如下:#include “pch.h”#include &…

大家好,又见面了,我是你们的朋友全栈君。如果您正在找激活码,请点击查看最新教程,关注关注公众号 “全栈程序员社区” 获取激活教程,可能之前旧版本教程已经失效.最新Idea2022.1教程亲测有效,一键激活。

Jetbrains全系列IDE使用 1年只要46元 售后保障 童叟无欺

案例分析:

写出下面二叉树的先、中、后序遍历输出的结果:
注:先自己推算,然后用程序验算。

在这里插入图片描述
先序遍历的结果:A F H D C B J G E I K
中序遍历的结果:D H C F J B G A I E K
后序遍历的结果:D C H J G B F I K E A

代码如下:

#include "pch.h"
#include <iostream>
using namespace std;

int top = -1;
typedef struct Bitnode
{ 
   
	char data;
	Bitnode *lchild, *rchild;
}Bitnode,*bittree;

//创建一个二叉树
void Createbittree(bittree *t)
{ 
   
	*t =(Bitnode *) malloc(sizeof(Bitnode));
	(*t)->data = 'A';
	(*t)->lchild= (Bitnode *)malloc(sizeof(Bitnode));
	(*t)->rchild =(Bitnode *)malloc(sizeof(Bitnode));
	(*t)->lchild->data = 'F';
	(*t)->rchild->data = 'E';
	(*t)->lchild->lchild = (Bitnode *)malloc(sizeof(Bitnode));
	(*t)->lchild->rchild = (Bitnode *)malloc(sizeof(Bitnode));
	(*t)->rchild->lchild = (Bitnode *)malloc(sizeof(Bitnode));
	(*t)->rchild->rchild = (Bitnode *)malloc(sizeof(Bitnode));
	(*t)->lchild->lchild->data = 'H';
	(*t)->lchild->rchild->data = 'B';
	(*t)->rchild->lchild->data = 'I';
	(*t)->rchild->rchild->data = 'K';
	(*t)->rchild->lchild->lchild= NULL;
	(*t)->rchild->lchild->rchild= NULL;
	(*t)->rchild->rchild->lchild = NULL;
	(*t)->rchild->rchild->rchild = NULL;
	(*t)->lchild->lchild->lchild = (Bitnode *)malloc(sizeof(Bitnode));
	(*t)->lchild->lchild->lchild->lchild = NULL;
	(*t)->lchild->lchild->lchild->rchild = NULL;
	(*t)->lchild->lchild->rchild = (Bitnode *)malloc(sizeof(Bitnode));
	(*t)->lchild->lchild->rchild->lchild = NULL;
	(*t)->lchild->lchild->rchild->rchild = NULL;
	(*t)->lchild->rchild->lchild = (Bitnode *)malloc(sizeof(Bitnode));
	(*t)->lchild->rchild->lchild->lchild = NULL;
	(*t)->lchild->rchild->lchild->rchild = NULL;
	(*t)->lchild->rchild->rchild = (Bitnode *)malloc(sizeof(Bitnode));
	(*t)->lchild->rchild->rchild->lchild = NULL;
	(*t)->lchild->rchild->rchild->rchild = NULL;
	(*t)->lchild->lchild->lchild->data = 'D';
	(*t)->lchild->lchild->rchild->data = 'C';
	(*t)->lchild->rchild->lchild->data = 'J';
	(*t)->lchild->rchild->rchild->data = 'G';
}
//先序遍历入栈
void Push(Bitnode **a,Bitnode *elem)
{ 
   
	a[++top] = elem;
}
//先序遍历出栈
void Pop()
{ 
   
	if (top==-1)
	{ 
   
		return;
	}
	top--;
}
//获取栈顶元素
Bitnode *Get_top(Bitnode**a)
{ 
   
	return a[top];
}
//输出节点数据
void Printelem(Bitnode *elem)
{ 
   
	cout << elem->data << " ";
}
//实现先序遍历算法
void preorder(Bitnode*tree)
{ 
   
	Bitnode *a[30];
	Bitnode *p;
	Push(a, tree);
	while (top!=-1)
	{ 
   
		p = Get_top(a);
		Pop();
		while (p)
		 { 
   
			Printelem(p);
			if (p->rchild)
			{ 
   
				Push(a,p->rchild);
			}
			p = p->lchild;
		}
	}
}
//中序遍历二叉树
void inorder(bittree tree)
{ 
   
	Bitnode *a[30];	//定义一个顺序栈
	Bitnode *p;		//临时指针
	Push(a, tree);	//根节点入栈
	while (top != -1)	//top!=-1来判定栈是否为空
	{ 
   
		while ((p=Get_top(a))&&p)//获取栈顶元素不为空
		{ 
   
			//左子树节点入栈,如果没有,null入栈
			Push(a, p->lchild);
		}
		Pop();//跳出循环,栈顶元素是空,
		if (top!=-1)
		{ 
   
			p = Get_top(a);//获取栈顶元素
			Pop();
			Printelem(p);
			Push(a,p->rchild);//右子树节点入栈
		}
	}
}



//二叉树后序遍历(非递归法)
struct Snode
{ 
   
	bittree p;
	int tag;
};
//后序遍历的入栈函数
void PostPush(Snode*a, Snode sdata)
{ 
   
	a[++top] = sdata;
}
//后序遍历
void PostOrder(bittree tree)
{ 
   
	Snode a[20];
	Bitnode*p;		//节点指针
	int tag;
	Snode sdata;
	p = tree;
	while (p||top!=-1)//用的或,这两种都行
	{ 
   
		while (p)
		{ 
   
			sdata.p = p;
			sdata.tag = 0;//遍历左子树,设置标记位为0
			PostPush(a, sdata);//入栈
			p = p->lchild;//以该节点为根节点,遍历左子树
		}
		sdata=a[top];
		Pop();
		p = sdata.p;
		tag = sdata.tag;

		if (tag==0)//条件为真,左子树遍历完成,该节点需要遍历右子树
		{ 
   
			sdata.p = p;
			sdata.tag = 1;
			PostPush(a, sdata);//更改节点标志位,重新入栈
			p = p->rchild;//将该节点的右子树设置为根节点,重新循环

		}
		else
		{ 
   
			Printelem(p);
			p = NULL;
		}
	}
}
int main()
{ 
   
	bittree tree;
	Createbittree(&tree);
	cout << "先序遍历的结果为:";
	preorder(tree);
	cout << endl;
	cout << "中序遍历的结果为:";
	inorder(tree);
	cout << endl;
	cout << "后序遍历的结果为:";
	PostOrder(tree);
	cout << endl;
	return 0;
}

结果为:
在这里插入图片描述

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请联系我们举报,一经查实,本站将立刻删除。

发布者:全栈程序员-站长,转载请注明出处:https://javaforall.net/170980.html原文链接:https://javaforall.net

(0)
全栈程序员-站长的头像全栈程序员-站长


相关推荐

  • 使用Lucene检索文档中的关键字

    使用Lucene检索文档中的关键字

    2021年8月21日
    57
  • SSH命令及使用说明

    SSH命令及使用说明

    2021年6月16日
    103
  • java经典面试题之Spring Boot 面试题汇总附答案(史上最全持续更新)「建议收藏」

    java经典面试题之Spring Boot 面试题汇总附答案(史上最全持续更新)「建议收藏」1.什么是SpringBoot?SpringBoot是Spring开源组织下的子项目,是Spring组件一站式解决方案,主要是简化了使用Spring的难度,简省了繁重的配置,提供了各种启动器,开发者能快速上手。2.SpringBoot有哪些优点?SpringBoot主要有如下优点:容易上手,提升开发效率,为Spring开发提供一个更快、更广泛的入门体验。开箱即用,远离繁琐的配置。提供了一系列大型项目通用的非业务性功能,例如:内嵌服务器、安全管理、运行数据监

    2022年10月12日
    0
  • Pytest(8)parametrize参数化[通俗易懂]

    Pytest(8)parametrize参数化[通俗易懂]前言当某个接口中的一个字段,里面规定的范围为1-5,你5个数字都要单独写一条测试用例,就太麻烦了,这个时候可以使用pytest.mark.parametrize装饰器可以实现测试用例参数化。官方示

    2022年7月28日
    5
  • webstorm2021.4激活码_通用破解码

    webstorm2021.4激活码_通用破解码,https://javaforall.net/100143.html。详细ieda激活码不妨到全栈程序员必看教程网一起来了解一下吧!

    2022年3月16日
    130
  • Folium_个人基础信息介绍

    Folium_个人基础信息介绍folium基础内容介绍1.简介​ folium是js上著名的地理信息可视化库leafet.js为Python提供的接口,通过它,我们可以通过在Python端编写代码操纵数据,来调用leaflet的相关功能,基于内建的osm或自行获取的osm资源和地图原件进行地理信息内容的可视化,以及制作优美的可交互地图,是通过不断添加图层元素来定义一个Map对象,最后以几种方式将Map对象展现出来。​ 而在Map对象的生成形式上,可以在定义所有的图层内容之后,将其保存为html文件在浏览器中独立显示,也可以基于j

    2025年7月3日
    0

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

关注全栈程序员社区公众号