机器学习算法——线性回归(超级详细且通俗)

机器学习算法——线性回归(超级详细且通俗)通俗理解线性回归回归分析什么是回归分析呢?这是一个来自统计学的概念。回归分析是指一种预测性的建模技术,主要是研究自变量和因变量的关系。通常使用线/曲线来拟合数据点,然后研究如何使曲线到数据点的距离差异最小。例如,存在以下数据然后我们拟合一条曲线f(x):回归分析的目标就是要拟合一条曲线,让图中红色线段加起来的和最小。线性回归(简介)线性回归是回归分析的一种。假设目标值(因变量)与特征值(自变量)之间线性相关(即满足一个多元一次方程,如:f(x)=w1x1+…+wnxn+b.)。然后构

大家好,又见面了,我是你们的朋友全栈君。如果您正在找激活码,请点击查看最新教程,关注关注公众号 “全栈程序员社区” 获取激活教程,可能之前旧版本教程已经失效.最新Idea2022.1教程亲测有效,一键激活。

Jetbrains全系列IDE使用 1年只要46元 售后保障 童叟无欺

通俗理解线性回归

回归分析

什么是回归分析呢?这是一个来自统计学的概念。回归分析是指一种预测性的建模技术,主要是研究自变量和因变量的关系。通常使用线/曲线来拟合数据点,然后研究如何使曲线到数据点的距离差异最小。
例如,存在以下数据
在这里插入图片描述
然后我们拟合一条曲线f(x):
在这里插入图片描述
回归分析的目标就是要拟合一条曲线,让图中红色线段加起来的和最小。

线性回归(简介)

线性回归是回归分析的一种。

  1. 假设目标值(因变量)与特征值(自变量)之间线性相关(即满足一个多元一次方程,如:f(x)=w1x1+…+wnxn+b.)。
  2. 然后构建损失函数。
  3. 最后通过令损失函数最小来确定参数。(最关键的一步)

线性回归(详解)

还是按照简介的思路来说,以简单的一元线性回归(一元代表只有一个未知自变量)做介绍。

有n组数据,自变量x(x1,x2,…,xn),因变量y(y1,y2,…,yn),然后我们假设它们之间的关系是:f(x)=ax+b。那么线性回归的目标就是如何让f(x)和y之间的差异最小,换句话说就是a,b取什么值的时候f(x)和y最接近。
这里我们得先解决另一个问题,就是如何衡量f(x)和y之间的差异。在回归问题中,均方误差是回归任务中最常用的性能度量(自行百度一下均方误差)。记J(a,b)为f(x)和y之间的差异,即
在这里插入图片描述
i代表n组数据中的第i组。
这里称J(a,b)为损失函数,明显可以看出它是个二次函数,即凸函数(这里的凸函数对应中文教材的凹函数),所以有最小值。当J(a,b)取最小值的时候,f(x)和y的差异最小,然后我们可以通过J(a,b)取最小值来确定a和b的值。

到这里可以说线性回归就这些了,只不过我们还需要解决其中最关键的问题:确定a和b的值

下面介绍三种方法来确定a和b的值:

  1. 最小二乘法
    既然损失函数J(a,b)是凸函数,那么分别关于a和b对J(a,b)求偏导,并令其为零解出a和b。这里直接给出结果:
    在这里插入图片描述
    在这里插入图片描述
    解得:
    在这里插入图片描述

在这里插入图片描述

  1. 梯度下降法
    首先你得先了解一下梯度的概念:梯度的本意是一个向量(矢量),表示某一函数(该函数一般是二元及以上的)在该点处的方向导数沿着该方向取得最大值,即函数在该点处沿着该方向(此梯度的方向)变化最快,变化率最大(为该梯度的模)。
    当函数是一元函数时,梯度就是导数。这里我们用一个最简单的例子来讲解梯度下降法,然后推广理解更为复杂的函数。
    还是用上面的例子,有n组数据,自变量x(x1,x2,…,xn),因变量y(y1,y2,…,yn),但这次我们假设它们之间的关系是:f(x)=ax。记J(a)为f(x)和y之间的差异,即
    在这里插入图片描述
    在梯度下降法中,需要我们先给参数a赋一个预设值,然后再一点一点的修改a,直到J(a)取最小值时,确定a的值。下面直接给出梯度下降法的公式(其中α为正数):
    在这里插入图片描述
    下面解释一下公式的意义,J(a)和a的关系如下图,
    在这里插入图片描述
    假设给a取的预设值是a1的话,那么a对J(a)的导数为负数,则在这里插入图片描述
    也为负数,所以
    在这里插入图片描述
    意味着a向右移一点。然后重复这个动作,直到J(a)到达最小值。
    同理,假设给a取的预设值是a2的话,那么a对J(a)的导数为正数,则
    在这里插入图片描述
    意味着a向左移一点。然后重复这个动作,直到J(a)到达最小值。
    所以我们可以看到,不管a的预设值取多少,J(a)经过梯度下降法的多次重复后,最后总能到达最小值。
    这里再举个生活中的栗子,梯度下降法中随机给a赋一个预设值就好比你随机出现在一个山坡上,然后这时候你想以最快的方式走到山谷的最低点,那么你就得判断你的下一步该往那边走,走完一步之后同样再次判断下一步的方向,以此类推就能走到山谷的最低点了。而公式中的α我们称它为学习率,在栗子中可以理解为你每一步跨出去的步伐有多大,α越大,步伐就越大。(实际中α的取值不能太大也不能太小,太大会造成损失函数J接近最小值时,下一步就越过去了。好比在你接近山谷的最低点时,你步伐太大一步跨过去了,下一步往回走的时候又是如此跨过去,永远到达不了最低点;α太小又会造成移动速度太慢,因为我们当然希望在能确保走到最低点的前提下越快越好。)
    到这里,梯度下降法的思想你基本就理解了,只不过在栗子中我们是用最简单的情况来说明,而事实上梯度下降法可以推广到多元线性函数上,这里直接给出公式,理解上(需要你对多元函数的相关知识有了解)和上面的栗子殊途同归。
    假设有n组数据,其中目标值(因变量)与特征值(自变量)之间的关系为:
    在这里插入图片描述
    其中i表示第i组数据,损失函数为:
    损失函数
    梯度下降法:
    在这里插入图片描述

  2. 正规方程
    (这里需要用到矩阵的知识)
    正规方程一般用在多元线性回归中,原因等你看完也就能理解为什么。所以这里不再用一元线性回归举栗子了。
    同样,假设有n组数据,其中目标值(因变量)与特征值(自变量)之间的关系为:
    在这里插入图片描述
    其中i表示第i组数据,这里先直接给出正规方程的公式:在这里插入图片描述
    推导过程如下
    记矩阵在这里插入图片描述
    向量
    在这里插入图片描述
    在这里插入图片描述

    在这里插入图片描述
    损失函数为:在这里插入图片描述
    对损失函数求导并令其为0,有在这里插入图片描述
    解得在这里插入图片描述
    到此,就求出了所有系数θ。不过正规方程需要注意的是在这里插入图片描述
    在实际中可能会出现是奇异矩阵,往往是因为特征值之间不独立。这时候需要对特征值进行筛选,剔除那些存在线性关系的特征值(好比在预测房价中,特征值1代表以英尺为尺寸计算房子,特征值2代表以平方米为尺寸计算房子,这时特征值1和特征值2只需要留1个即可)。

好了,以上就是线性回归的讲解(如果对你理解线性回归确实有帮助的话,帮忙点个赞,同时也欢迎指出问题)。 下面再补充一下个人对上面三种确定系数θ方法的评估。

  • 梯度下降法是通用的,包括更为复杂的逻辑回归算法中也可以使用,但是对于较小的数据量来说它的速度并没有优势
  • 正规方程的速度往往更快,但是当数量级达到一定的时候,还是梯度下降法更快,因为正规方程中需要对矩阵求逆,而求逆的时间复杂的是n的3次方
  • 最小二乘法一般比较少用,虽然它的思想比较简单,在计算过程中需要对损失函数求导并令其为0,从而解出系数θ。但是对于计算机来说很难实现,所以一般不使用最小二乘法。
版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请联系我们举报,一经查实,本站将立刻删除。

发布者:全栈程序员-站长,转载请注明出处:https://javaforall.net/171740.html原文链接:https://javaforall.net

(0)
全栈程序员-站长的头像全栈程序员-站长


相关推荐

  • java之—冒泡排序

    java之—冒泡排序首先,什么是冒泡排序(BubbleSort)呢?     对未排序的各元素从头到尾依次比较相邻的两个元素大小关系,若大于则交换位置,经过第一轮比较排序后可得出最大值,然后使用同样的方法把剩下的元素逐个比较即可。    假如有N个元素,那么一共要进行N-1轮比较,第M轮要进行N-M次比较。(若6个元素,要进行6-1轮比较,第一轮比较6-1次,第四轮比较6-4次)  pa…

    2022年6月13日
    25
  • MapReduce编程案例系列篇(01-15)

    MapReduce编程案例系列篇(01-15)由于本人最开始接触大数据工作,主要以写MapReduce程序为主,虽然现在有流行的言论称MapReduce这种运行很慢的分布式计算编程框架将要被各种内存计算框架取代。但是MapRedcue也会吸收很多流行的内存计算的各种优点,我相信,将来,MapReduce绝对不会沦落到要淘汰的地步。甚至会后来居上。在此,本人总结一篇关于MapReduce编程的各种典型应用场景编程案例,便于大家查阅学习…

    2022年6月17日
    33
  • c语言odbc连接数据库_odbc配置access数据库

    c语言odbc连接数据库_odbc配置access数据库一.ODBC连ORACLE: str.Format(“Driver={Microsoft ODBC for Oracle};Server=OracleServer.world;Uid=Username;Pwd=asdasd;”)二.ADO连接ORACLE:

    2022年8月12日
    5
  • PHP工厂模式的好处

    PHP工厂模式的好处 顾名思义,工厂是可以加工零件的,PHP程序中的工厂模式也有相同的功能,可以方便的使用一个静态的工厂方法来实例化某一个类,那么这样做的好处是什么呢?初学PHP的设计模式,以下是我个人的理解 一般我们实例化一个类会给它一些参数以便在其构析的时候可以根据不同的参数反馈出我们需要的结果。举例说明,以下是一个User类,非常简单:01.02.      03.    int

    2022年7月25日
    10
  • rabbitmq集群搭建_rabbitmq创建队列

    rabbitmq集群搭建_rabbitmq创建队列一普通集群以如下两台服务器为例ip:172.16.9.8hostname:rabbitmq1(master)ip:172.16.9.9hostname:rabbitmq2(slave)1.修改host文件编辑/etc/hosts文件,添加172.16.9.8rabbitmq1172.16.9.9rabbitmq22.复制cookie内容打开文件然后需要先把172.16.9.8服务器的/var/lib/rabbitmq/.erla…

    2022年9月11日
    0
  • 数字图像处理标准图像Lena的故事「建议收藏」

    数字图像处理标准图像Lena的故事「建议收藏」熟悉图像处理或者压缩的工程师、研究人员和学生经常在他们的实验或者项目任务里使用“Lenna”或者“Lena”的图像。Lenna图像已经成为被广泛使用的测试图像。今天,Lenna图像的使用被认为是数字图像历史上最重要的事件之一。然而,很少有人看过原始的图像并知道完整的关于Lenna的故事。这里3sBeta将综合收集的材料对此做一个详细的梳理。。。1.Lena图像的来源在数

    2022年6月19日
    29

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

关注全栈程序员社区公众号