全卷积神经网络FCN可以通过什么提高图像分割精度_全连接神经网络

全卷积神经网络FCN可以通过什么提高图像分割精度_全连接神经网络卷积神经网络CNN(YannLecun,1998年)通过构建多层的卷积层自动提取图像上的特征,一般来说,排在前边较浅的卷积层采用较小的感知域,可以学习到图像的一些局部的特征(如纹理特征),排在后边较深的卷积层采用较大的感知域,可以学习到更加抽象的特征(如物体大小,位置和方向信息等)。CNN在图像分类和图像检测领域取得了广泛应用。 CNN提取的抽象特征对图像分类、图像中包含哪些类别的物体,以及图…

大家好,又见面了,我是你们的朋友全栈君。如果您正在找激活码,请点击查看最新教程,关注关注公众号 “全栈程序员社区” 获取激活教程,可能之前旧版本教程已经失效.最新Idea2022.1教程亲测有效,一键激活。

Jetbrains全系列IDE稳定放心使用

卷积神经网络CNN(YannLecun,1998年)通过构建多层的卷积层自动提取图像上的特征,一般来说,排在前边较浅的卷积层采用较小的感知域,可以学习到图像的一些局部的特征(如纹理特征),排在后边较深的卷积层采用较大的感知域,可以学习到更加抽象的特征(如物体大小,位置和方向信息等)。CNN在图像分类和图像检测领域取得了广泛应用。
 
CNN提取的抽象特征对图像分类、图像中包含哪些类别的物体,以及图像中物体粗略位置的定位很有效,但是由于采用了感知域,对图像特征的提取更多的是以“一小块临域”为单位的,因此很难做到精细(像素级)的分割,不能很准确的划定物体具体的轮廓。
 
针对CNN在图像精细分割上存在的局限性,UC Berkeley的Jonathan Long等人2015年在其论文 “Fully convolutional networks for semantic segmentation”(用于语义分割的全卷积神经网络)中提出了Fully Convolutional Networks (FCN)用于图像的分割,要解决的核心问题就是图像像素级别的分类。论文链接: https://arxiv.org/abs/1411.4038
 
FCN与CNN的核心区别就是FCN将CNN末尾的全连接层转化成了卷积层:

全卷积神经网络FCN可以通过什么提高图像分割精度_全连接神经网络

以Alexnet为例,输入是227*227*3的图像,前5层是卷积层,第5层的输出是256个特征图,大小是6*6,即256*6*6,第6、7、8层分别是长度是4096、4096、1000的一维向量。

全卷积神经网络FCN可以通过什么提高图像分割精度_全连接神经网络

 

在FCN中第6、7、8层都是通过卷积得到的,卷积核的大小全部是1*1,第6层的输出是4096*7*7,第7层的输出是4096*7*7,第8层的输出是1000*7*7(7是输入图像大小的1/32),即1000个大小是7*7的特征图(称为heatmap)。

全卷积神经网络FCN可以通过什么提高图像分割精度_全连接神经网络

 

经过多次卷积后,图像的分辨率越来越低,,为了从低分辨率的heatmap恢复到原图大小,以便对原图上每一个像素点进行分类预测,需要对heatmap进行反卷积,也就是上采样。论文中首先进行了一个上池化操作,再进行反卷积,使得图像分辨率提高到原图大小:

全卷积神经网络FCN可以通过什么提高图像分割精度_全连接神经网络

 

 对第5层的输出执行32倍的反卷积得到原图,得到的结果不是很精确,论文中同时执行了第4层和第3层输出的反卷积操作(分别需要16倍和8倍的上采样),再把这3个反卷积的结果图像融合,提升了结果的精确度:

全卷积神经网络FCN可以通过什么提高图像分割精度_全连接神经网络

最后像素的分类按照该点在1000张上采样得到的图上的最大的概率来定。
 

FCN可以接受任意大小的输入图像,但是FCN的分类结果还是不够精细,对细节不太敏感,再者没有考虑到像素与像素之间的关联关系,丢失了部分空间信息。

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请联系我们举报,一经查实,本站将立刻删除。

发布者:全栈程序员-站长,转载请注明出处:https://javaforall.net/179437.html原文链接:https://javaforall.net

(0)
全栈程序员-站长的头像全栈程序员-站长


相关推荐

  • matlab 汽车振动,matlab在汽车振动分析

    matlab 汽车振动,matlab在汽车振动分析matlab在汽车振动分析Matlab在振动分析中的应用刘迪辉2011-10-20大家学了游泳理论,现在我们借助MATLAB软件,来练习一下游泳!实际问题:客车的振动分析•客车样车路试过程中却出现了令人意想不到的一系列振动问题,主要表现为:(1)汽车起动时发动机抖动厉害;(2)当车速在40km/h左右时,整车有共振现象;(3)当车速在85km/h左右时,…

    2022年10月16日
    0
  • nginx负载均衡的五种算法

    nginx负载均衡的五种算法nginx负载均衡的五种算法一、Nginx负载均衡算法1、轮询(默认)每个请求按时间顺序逐一分配到不同的后端服务,如果后端某台服务器死机,自动剔除故障系统,使用户访问不受影响。例如:upstreambakend{server192.168.0.1;server192.168.0.2;}2、weight(轮询权值)we…

    2022年10月12日
    0
  • 项目的生命周期_项目生命周期的阶段

    项目的生命周期_项目生命周期的阶段项目管理的基本内容:计划、组织和监控。项目生命周期划分为3个基本的阶段:计划、实时监控和总结。根据PMBOK,项目生命周期分为5个阶段:(1)启动。>项目正式被立项,并成立项目组,宣

    2022年8月6日
    1
  • 群晖aria2外网无法访问(群晖设置aria2)

    NAS群晖DSM5.2小白教程:一行命令用Docker架设aria2服务首发2016-05-1712:15:2225点赞285收藏57评论小编注:此篇文章来自即可瓜分10万金币,周边好礼达标就有,邀新任务奖励无上限,点击查看活动详情群晖DSM5.2起新增支持Docker让开发者与用户能以最少的时间与资源,能够在Synology服务器上部署和运行大量应用程序。Docker容器和普通的虚…

    2022年4月14日
    800
  • 部署rsyslog[通俗易懂]

    部署rsyslog[通俗易懂]为了收集一个服务的业务日志,用于监控接口超时时间,简单应用所以用rsyslog来做一、客户端配置type=“imfile”:固定的配置,直接复制使用File="/home/homework/xxx.log":需要发送的日志路径和名称Tag=“mall-order_debug”:tag标签,自行定义Severity=“debug”:日志级别,自己定义Facility=

    2022年9月24日
    0
  • ubuntu16.04安装pycharm_pycharmlinux安装

    ubuntu16.04安装pycharm_pycharmlinux安装1.安装包下载进入https://www.jetbrains.com/pycharm/download/download-thanks.html?platform=linux

    2022年8月27日
    2

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

关注全栈程序员社区公众号