使用netron对mnist网络结构分析「建议收藏」

使用netron对mnist网络结构分析「建议收藏」基于libonnx环境简要分析一下mnist网络算子结构,关于环境搭建可以参考前面两篇文章:xboot大神的libonnx环境搭建使用netron实现对onnx模型结构可视化本文主要目的是搞清楚mnist各层之间数据shape的变化情况,关于什么是shape,引用一本书中的介绍:”在tensorflow中,使用张量来表示计算图中的所有数据,张量在计算图的节点之间流动,张量可以看成N维数组,而数组的维数就是张量的阶数。因此,0阶张量对应标量数据,1阶张量对应一维数组,也就是向量。二阶张量对应二

大家好,又见面了,我是你们的朋友全栈君。如果您正在找激活码,请点击查看最新教程,关注关注公众号 “全栈程序员社区” 获取激活教程,可能之前旧版本教程已经失效.最新Idea2022.1教程亲测有效,一键激活。

Jetbrains全系列IDE稳定放心使用

基于libonnx环境简要分析一下mnist网络算子结构,关于环境搭建可以参考前面两篇文章:

xboot大神的libonnx环境搭建

使用netron实现对onnx模型结构可视化


本文主要目的是搞清楚mnist各层之间数据shape的变化情况,关于什么是shape,引用一本书中的介绍:

“在tensorflow中,使用张量来表示计算图中的所有数据,张量在计算图的节点之间流动,张量可以看成N维数组,而数组的维数就是张量的阶数。因此,0阶张量对应标量数据,1阶张量对应一维数组,也就是向量。二阶张量对应二维数组,也就是矩阵,以此类推,N阶张量对应n维数组,例如,一张RGB图像可以表示为3阶张量,而多张RGB图构成的数据可以表示为4阶张量。shape(形状)代表的就是张量的一种属性,当然还有其他属性,比如数据类型等等”

再算子执行前面打断点,依次观察输入数据和输出数据的大小:

(gdb) b 2124
Breakpoint 2 at 0x555555560ef8: file onnx.c, line 2124.
(gdb) display n->inputs[0]->ndata
(gdb) display n->outputs[0]->ndata
(gdb) c
Continuing.
Breakpoint 2, onnx_run (ctx=0x555555a501e0) at onnx.c:2124
2124					n->operator(n);
1: n->inputs[0]->ndata = 2560
2: n->outputs[0]->ndata = 2560
(gdb) c
Continuing.

Breakpoint 2, onnx_run (ctx=0x555555a501e0) at onnx.c:2124
2124					n->operator(n);
1: n->inputs[0]->ndata = 784
2: n->outputs[0]->ndata = 6272
(gdb) c
Continuing.

Breakpoint 2, onnx_run (ctx=0x555555a501e0) at onnx.c:2124
2124					n->operator(n);
1: n->inputs[0]->ndata = 6272
2: n->outputs[0]->ndata = 6272
(gdb) c
Continuing.

Breakpoint 2, onnx_run (ctx=0x555555a501e0) at onnx.c:2124
2124					n->operator(n);
1: n->inputs[0]->ndata = 6272
2: n->outputs[0]->ndata = 6272
(gdb) c
Continuing.

Breakpoint 2, onnx_run (ctx=0x555555a501e0) at onnx.c:2124
2124					n->operator(n);
1: n->inputs[0]->ndata = 6272
2: n->outputs[0]->ndata = 1568
(gdb) c
Continuing.

Breakpoint 2, onnx_run (ctx=0x555555a501e0) at onnx.c:2124
2124					n->operator(n);
1: n->inputs[0]->ndata = 1568
2: n->outputs[0]->ndata = 3136
(gdb) c
Continuing.

Breakpoint 2, onnx_run (ctx=0x555555a501e0) at onnx.c:2124
2124					n->operator(n);
1: n->inputs[0]->ndata = 3136
2: n->outputs[0]->ndata = 3136
(gdb) c
Continuing.

Breakpoint 2, onnx_run (ctx=0x555555a501e0) at onnx.c:2124
2124					n->operator(n);
1: n->inputs[0]->ndata = 3136
2: n->outputs[0]->ndata = 3136
(gdb) c
Continuing.

Breakpoint 2, onnx_run (ctx=0x555555a501e0) at onnx.c:2124
2124					n->operator(n);
1: n->inputs[0]->ndata = 3136
2: n->outputs[0]->ndata = 256
(gdb) c
Continuing.

Breakpoint 2, onnx_run (ctx=0x555555a501e0) at onnx.c:2124
2124					n->operator(n);
1: n->inputs[0]->ndata = 256
2: n->outputs[0]->ndata = 256
(gdb) c
Continuing.

Breakpoint 2, onnx_run (ctx=0x555555a501e0) at onnx.c:2124
2124					n->operator(n);
1: n->inputs[0]->ndata = 256
2: n->outputs[0]->ndata = 10
(gdb) c
Continuing.

Breakpoint 2, onnx_run (ctx=0x555555a501e0) at onnx.c:2124
2124					n->operator(n);
1: n->inputs[0]->ndata = 10
2: n->outputs[0]->ndata = 10
(gdb) c
Continuing.

可以看出一个简单的规律,就是前一级网络的输出size等于后一级网络的输入size.

对照网络,可以完全对应的上:

使用netron对mnist网络结构分析「建议收藏」

将shape打印出(由dims表示),可以看出和上图完全吻合。(图中一维向量表示为1*N,也看成2维的shape).

Breakpoint 3, onnx_run (ctx=0x5555559ff250) at onnx.c:2124
2124					n->operator(n);
1: n->inputs[0]->ndata = 2560
2: n->outputs[0]->ndata = 2560
3: n->inputs[0]->ndim = 4
4: n->outputs[0]->ndim = 2
(gdb) c
Continuing.

Breakpoint 3, onnx_run (ctx=0x5555559ff250) at onnx.c:2124
2124					n->operator(n);
1: n->inputs[0]->ndata = 784
2: n->outputs[0]->ndata = 6272
3: n->inputs[0]->ndim = 4
4: n->outputs[0]->ndim = 4
(gdb) c
Continuing.

Breakpoint 3, onnx_run (ctx=0x5555559ff250) at onnx.c:2124
2124					n->operator(n);
1: n->inputs[0]->ndata = 6272
2: n->outputs[0]->ndata = 6272
3: n->inputs[0]->ndim = 4
4: n->outputs[0]->ndim = 4
(gdb) c
Continuing.

Breakpoint 3, onnx_run (ctx=0x5555559ff250) at onnx.c:2124
2124					n->operator(n);
1: n->inputs[0]->ndata = 6272
2: n->outputs[0]->ndata = 6272
3: n->inputs[0]->ndim = 4
4: n->outputs[0]->ndim = 4
(gdb) c
Continuing.

Breakpoint 3, onnx_run (ctx=0x5555559ff250) at onnx.c:2124
2124					n->operator(n);
1: n->inputs[0]->ndata = 6272
2: n->outputs[0]->ndata = 1568
3: n->inputs[0]->ndim = 4
4: n->outputs[0]->ndim = 4
(gdb) c
Continuing.

Breakpoint 3, onnx_run (ctx=0x5555559ff250) at onnx.c:2124
2124					n->operator(n);
1: n->inputs[0]->ndata = 1568
2: n->outputs[0]->ndata = 3136
3: n->inputs[0]->ndim = 4
4: n->outputs[0]->ndim = 4
(gdb) 
Continuing.

Breakpoint 3, onnx_run (ctx=0x5555559ff250) at onnx.c:2124
2124					n->operator(n);
1: n->inputs[0]->ndata = 3136
2: n->outputs[0]->ndata = 3136
3: n->inputs[0]->ndim = 4
4: n->outputs[0]->ndim = 4
(gdb) 
Continuing.

Breakpoint 3, onnx_run (ctx=0x5555559ff250) at onnx.c:2124
2124					n->operator(n);
1: n->inputs[0]->ndata = 3136
2: n->outputs[0]->ndata = 3136
3: n->inputs[0]->ndim = 4
4: n->outputs[0]->ndim = 4
(gdb) 
Continuing.

Breakpoint 3, onnx_run (ctx=0x5555559ff250) at onnx.c:2124
2124					n->operator(n);
1: n->inputs[0]->ndata = 3136
2: n->outputs[0]->ndata = 256
3: n->inputs[0]->ndim = 4
4: n->outputs[0]->ndim = 4
(gdb) 
Continuing.

Breakpoint 3, onnx_run (ctx=0x5555559ff250) at onnx.c:2124
2124					n->operator(n);
1: n->inputs[0]->ndata = 256
2: n->outputs[0]->ndata = 256
3: n->inputs[0]->ndim = 4
4: n->outputs[0]->ndim = 2
(gdb) 
Continuing.

Breakpoint 3, onnx_run (ctx=0x5555559ff250) at onnx.c:2124
2124					n->operator(n);
1: n->inputs[0]->ndata = 256
2: n->outputs[0]->ndata = 10
3: n->inputs[0]->ndim = 2
4: n->outputs[0]->ndim = 2
(gdb) 
Continuing.

Breakpoint 3, onnx_run (ctx=0x5555559ff250) at onnx.c:2124
2124					n->operator(n);
1: n->inputs[0]->ndata = 10
2: n->outputs[0]->ndata = 10
3: n->inputs[0]->ndim = 2
4: n->outputs[0]->ndim = 2
(gdb) 
Continuing.

然后再以ndim为上限,索引dims,还是以reshape为例:

使用netron对mnist网络结构分析「建议收藏」

可以看出和netron解析的图中reshape模块的shape完全吻合:

使用netron对mnist网络结构分析「建议收藏」

使用netron对mnist网络结构分析「建议收藏」

使用netron对mnist网络结构分析「建议收藏」

darknet网络举例:

netron不但可以解析onnx格式的模型文件,还支持darknet中 .cfg格式的文件,比如:

使用netron对mnist网络结构分析「建议收藏」

 不过貌似N,C,W,H的排列有所差别,在上面mnist网络中,顺序是,个数X通道数X长度X高度

而darknet的cfg中,对于输出数据,是WxHxC的方式,也即是宽X长X通道号,但是对于每个算子节点,则是CXNXWXH的方式,也即是通道数在前,之后依次是个数,宽和长. N是batch size.

使用netron对mnist网络结构分析「建议收藏」

从最后一层的模型看不出它的结构,实际上它是一个全连接层:

使用netron对mnist网络结构分析「建议收藏」

这一点可以通过芯原的模型转换工具的转换结果看出来,芯原的转换工具,可以将ONNX模型转换为芯原NPU吃的json文件模型,而netron是支持此类型的可视化输出的。

以下模型是和上图同一个模型文件,转换为芯原格式的JSON模型文件后,通过NETRON分析得到的网络模型结构,可以看到,最后一层是全连接。

使用netron对mnist网络结构分析「建议收藏」


lenet 模型都需要对吃进去的图像做数据归一化,libonnx实现也不例外

使用netron对mnist网络结构分析「建议收藏」

使用netron对mnist网络结构分析「建议收藏」

使用netron对mnist网络结构分析「建议收藏」 

使用netron对mnist网络结构分析「建议收藏」

使用netron对mnist网络结构分析「建议收藏」 


结束!

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请联系我们举报,一经查实,本站将立刻删除。

发布者:全栈程序员-站长,转载请注明出处:https://javaforall.net/179595.html原文链接:https://javaforall.net

(0)
全栈程序员-站长的头像全栈程序员-站长


相关推荐

  • linux下进程的管理_LINUX教程

    linux下进程的管理_LINUX教程作者:RodmaChen关注我的csdn博客,更多Linux笔记知识还在更新本人只在csdn写博客Linux进程管理一.什么是进程和程序二.查看进程——ps,top,pstree三.进程的启动方式四.进程的控制五.实训任务一.什么是进程和程序进程:开始执行但是还没有结束的程序的实例程序:包含可执行代码的文件进程与程序的关系进程由程序产生,是一个运行着的、要占系统资源的程序进程不等于程序进程与程序是多对一进程是占用(消耗)系统资源的二.查看进程—.

    2022年9月10日
    0
  • memorycleaner汉化版(v4l2 userptr)

    本文链接:https://blog.csdn.net/coroutines/article/details/70141086可参考:http://www.it610.com/article/4522348.htm//v4l2官方翻译基于V4L2的应用,通常面临着大块数据的读取与拷贝等问题。尤其在嵌入式系统中,对于实时性能要求较高的应用,拷贝会花上几十个ms…

    2022年4月16日
    131
  • go 布隆过滤器_布隆过滤器 redis

    go 布隆过滤器_布隆过滤器 redis最近面临这样的场景:2亿+数据需要调用后端服务A,业务需要1min处理完成,那么A服务承载的tps达到惊人的300w……必须想办法降低tps。那么方案来了:1、把时间窗口拉长2、降低待处理数据量。拉长时间业务肯定是接受不了的,但是按照以往的经验,这部分数据并不全部需要处理,可能仅有一半真正需要调用A服务,所以我们可以把1亿数据给过滤掉。这里我们维护一个布隆过滤器来进行数据的过滤。—————-以上都是导语—————-1.布隆过滤器的概

    2022年10月6日
    0
  • Windows CMD常用命令大全(值得收藏)

    Windows CMD常用命令大全(值得收藏)WindowsCMD常用命令大全前言1.常用命令1.1cd命令1.2查看目录文件1.3创建目录和删除目录1.4查看本机ip1.5清除屏幕1.6复制文件1.7移动文件1.8删除文件1.9ping1.10taskkill1.11netstat查看网络连接状态1.12find1.13tracert2.查看cmd下的命令3.辅助符号或命令3.1‘|’3.2重定向输出符号>>>3.3重定向输入符号<<<3.4终止一直在运行的命令ctr

    2022年6月13日
    40
  • 区块链应用 | 普华永道报告:区块链不只是比特币,还将改变这8大领域

    区块链应用 | 普华永道报告:区块链不只是比特币,还将改变这8大领域

    2021年5月26日
    243
  • 关于Json 与 Request Header 的Content-Type 一些关系。

    关于Json 与 Request Header 的Content-Type 一些关系。由于最近遇到关于ashx文件ajax解析参数的问题。查询网上很多资料后,已经解决。鉴于网上已经足够多的,关于这个问题的文章。大部分内容来自互联网,我这里只是做一些整理和记录。特此说明并非原创。Content-Type是返回消息中非常重要的内容,表示后面的文档属于什么MIME类型。Content-Type:[type]/[subtype];parameter。例如最常见的就是text/htm…

    2022年8月24日
    4

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

关注全栈程序员社区公众号