多层感知机和神经网络_CNN采用多层感知机进行分类

多层感知机和神经网络_CNN采用多层感知机进行分类单独的ESN仿真:ESN的运行结果如下所示:这个部分的误差为:0.0435ESN部分就不多做介绍了,你应该了解的,下面我们对ESN和BP改进和极限学习改进分别进行修改和说明,并进行仿真。ESN+BP的仿真:首先,在原始的ESN中,权值的计算是通过pseudoinverse.m这个函数进行计算的,其主要内容就是:即:这里,我们的主要方法…

大家好,又见面了,我是你们的朋友全栈君。如果您正在找激活码,请点击查看最新教程,关注关注公众号 “全栈程序员社区” 获取激活教程,可能之前旧版本教程已经失效.最新Idea2022.1教程亲测有效,一键激活。

Jetbrains全系列IDE使用 1年只要46元 售后保障 童叟无欺

单独的ESN仿真:

        ESN的运行结果如下所示:

多层感知机和神经网络_CNN采用多层感知机进行分类

         这个部分的误差为:

         0.0435

         ESN部分就不多做介绍了,你应该了解的,下面我们对ESN和BP改进和极限学习改进分别进行修改和说明,并进行仿真。

ESN+BP的仿真:

        首先,在原始的ESN中,权值的计算是通过pseudoinverse.m这个函数进行计算的,其主要内容就是:

       多层感知机和神经网络_CNN采用多层感知机进行分类

即:

      多层感知机和神经网络_CNN采用多层感知机进行分类

        这里,我们的主要方法为:

        将多层感知机和神经网络_CNN采用多层感知机进行分类计算得到的权值作为bp神经网络迭代的初始值,然后以这个初始值为迭代过程的第一个值,不断的训练迭代,最后得到ESN-BP输出的权值,然后进行测试。

         因此,其基本思路就是通过B-1T得到初始权值,然后通过bp网络进行迭代,得到最后优化后的值。

多层感知机和神经网络_CNN采用多层感知机进行分类

 计算后的误差为0.0427

        从上面的对比可知,采用BP神经网络进行权值系数的非线性更新之后,其误差可以进一步降低。但提升性能有限。

ESN+极限学习算法的仿真:

        这个部分的原理和上面的相同,不同的是,我们需要使用极限学习方法对ESN网络的中的权值进行更新。

多层感知机和神经网络_CNN采用多层感知机进行分类

 误差为:0.1050

下面给出整个算法的流程框图:

多层感知机和神经网络_CNN采用多层感知机进行分类

2.部分核心代码 

clc;
clear; 
close all;
warning off;
RandStream.setDefaultStream(RandStream('mt19937ar','seed',1));
addpath 'func\data_process\'
addpath 'func\Initial_ESN\'
addpath 'func\train_esn\'
addpath 'func\test_esn\'
 
load data.mat
%数据分割
train_fraction                           = 0.5;
[trainInputSequence, testInputSequence]  = split_train_test(inputSequence,train_fraction);
[trainOutputSequence,testOutputSequence] = split_train_test(outputSequence,train_fraction);

%generate an esn 
nInputUnits          = 2; 
nInternalUnits       = 32; 
nOutputUnits         = 1; 
esn                  = generate_esn(nInputUnits,nInternalUnits,nOutputUnits,'spectralRadius',0.5,'inputScaling',[0.1;0.1],'inputShift',[0;0],'teacherScaling',[0.3],'teacherShift',[-0.2],'feedbackScaling',0,'type','plain_esn'); 
esn.internalWeights  = esn.spectralRadius * esn.internalWeights_UnitSR;

%train the ESN
%discard the first 100 points
nForgetPoints        = 100; 
%这里,就固定设置一种默认的学习方式,其他的就注释掉了
[trainedEsn,stateMatrix] = train_esn(trainInputSequence,trainOutputSequence,esn,nForgetPoints) ; 

%test the ESN
nForgetPoints        = 100 ; 
predictedTrainOutput = test_esn(trainInputSequence, trainedEsn, nForgetPoints);
predictedTestOutput  = test_esn(testInputSequence,  trainedEsn, nForgetPoints) ; 

figure;
plot(testOutputSequence(nForgetPoints+4:end),'b');
hold on
plot(predictedTestOutput,'r');
legend('原数据','预测数据');
title('ESN-ELM:测试数据的预测');


%计算测试数据的预测结果:
estimatedOutput = predictedTestOutput(1:end-3);
correctOutput   = testOutputSequence(nForgetPoints+4:end);

nEstimatePoints = length(estimatedOutput) ; 
nForgetPoints   = length(correctOutput) - nEstimatePoints ;  
correctVariance = 1;
meanerror       = sum((estimatedOutput - correctOutput).^2)/nEstimatePoints ; 
err             =(sqrt(meanerror./correctVariance));
err

3.参考文献

A05-22

 

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请联系我们举报,一经查实,本站将立刻删除。

发布者:全栈程序员-站长,转载请注明出处:https://javaforall.net/179752.html原文链接:https://javaforall.net

(0)
全栈程序员-站长的头像全栈程序员-站长


相关推荐

  • eplan win10 能用激活码激活码_通用破解码

    eplan win10 能用激活码激活码_通用破解码,https://javaforall.net/100143.html。详细ieda激活码不妨到全栈程序员必看教程网一起来了解一下吧!

    2022年3月17日
    592
  • ARP–利用arpspoof和driftnet工具进行arp欺骗

    ARP–利用arpspoof和driftnet工具进行arp欺骗实验目的:1.了解ARP欺骗的原理。2.对ARP欺骗进行进一步的认识并提出防范措施。3.掌握熟悉arpspoof和driftnet的使用方法。任务与要求:1、利用arpspoof进行ARP断网攻击2.利用arpspoof工具和driftnet工具进行ARP欺骗原理:ARP(AddressResolutionProtocol)是地址解析协议,是一种将IP地址转化成物理地址的协议。从IP地址到物理地址的映射有两种方式:表格方式和非表格方式。ARP具体说来就…

    2022年9月1日
    1
  • 2020Java高级开发工程师面试题汇总

    2020Java高级开发工程师面试题汇总2020面试总结工作三年多,面试目标为高级开发工程师前言9.5–11.13,经过了长达70天的面试,终于有了结果。期间崩溃过无数次,很多次面试都被虐到怀疑人生,也有三面被刷掉无奈,一次次整装重新出发,一次次从头再来。今天有时间整理最近面试过程中涉及到的问题和经验,希望可以帮助到正在面试中或即将面试的同行们。一、面试过的公司阿里巴巴京东美团百度度小满金融爱奇艺当当网58同城贝壳找房快手小米滴滴微博陌陌中信银行尚德机构轻松筹货拉拉一起教育易车好未来二、面

    2022年5月29日
    49
  • 基于LDC1000的自动循迹小车

    基于LDC1000的自动循迹小车大三上学期课程设计的题目选了做小车,需要使用的是TI公司的LDC1000或者LDC1314,题目如下:首先选择做这道题是因为之前做小车比较熟悉,仔细分析一下其实也就是缺个传感器,其他的该有的都有了只需要稍作修改,于是乎开始了这一段有意思的旅途。将整个系统分为采集、处理、控制三部分。第一部分为采集模块,采用LDC1000采集赛道信息并转化为数字信号传输给数据处理模块。

    2022年6月7日
    37
  • pycharm 2021激活码[在线序列号][通俗易懂]

    pycharm 2021激活码[在线序列号],https://javaforall.net/100143.html。详细ieda激活码不妨到全栈程序员必看教程网一起来了解一下吧!

    2022年3月19日
    74
  • 【SpringBoot】19、SpringBoot中实现启动任务

    【SpringBoot】19、SpringBoot中实现启动任务我们在项目中会用到项目启动任务,即项目在启动的时候需要做的一些事,例如:数据初始化、获取第三方数据等等,那么如何在SpringBoot中实现启动任务,一起来看看吧SpringBoot中提供了两种项目启动方案,CommandLineRunner和ApplicationRunner一、CommandLineRunner使用CommandLineRunner,需要自定义一个类区实现CommandLineRunner接口,例如:importorg.springframework.boot.

    2022年9月26日
    0

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

关注全栈程序员社区公众号