高通MSM8953 LK阶段配置使用I2C8[通俗易懂]

高通MSM8953 LK阶段配置使用I2C8[通俗易懂]项目场景: 因为项目需要,需要在高通MSM8953平台的LK阶段使用I2C8设备。但是MSM8953平台LK阶段并没有配置好I2C8接口,因此调试I2C8成为当务之急。本文只介绍在LK阶段配置使用I2C5的方法。调试需要:1、文档:BAMLow-SpeedPeripherals(BLSP)UserGuide查看文档,有I2C介绍如下:I2c3对应的物理地址为0x78B7000,中断IRQ:97,时钟信号clk:clk_gcc_blsp1_qup3_i2c_apps_clk

大家好,又见面了,我是你们的朋友全栈君。如果您正在找激活码,请点击查看最新教程,关注关注公众号 “全栈程序员社区” 获取激活教程,可能之前旧版本教程已经失效.最新Idea2022.1教程亲测有效,一键激活。

Jetbrains全系列IDE稳定放心使用

项目场景:

	因为项目需要,需要在高通MSM8953平台的LK阶段使用I2C8设备。但是MSM8953平台LK阶段并没有配置好I2C8接口,因此调试I2C8成为当务之急。本文只介绍在LK阶段配置使用I2C5的方法。

调试需要:

1、文档:BAM Low-Speed Peripherals (BLSP) User Guide
查看文档,有I2C介绍如下:
在这里插入图片描述
I2c3对应的物理地址为0x78B7000 , 中断IRQ:97 ,时钟信号 clk :clk_gcc_blsp1_qup3_i2c_apps_clk ,
I2c3对应的物理地址为0x7AF8000 , 中断IRQ:302,时钟信号 clk :clk_gcc_blsp2_qup4_i2c_apps_clk
查看产品配置表有:
I2C3:gpio10&gpio11;i2c8:gpio98&gpio99;

I2C Description :
		1、 arg: BLSP ID can be BLSP_ID_1 or BLSP_ID_2
		2、 arg: QUP ID can be QUP_ID_0:QUP_ID_5
		3、 arg: I2C CLK. should be 100KHZ, or 400KHz
		4、 arg: Source clock, should be set @ 19.2MHz

解决方案:

1、Initialize the I2C bus.

//mipi_dsi_i2c.c
#define I2C_CLK_FREQ 100000
#define I2C_SRC_CLK_FREQ 19200000

int mipi_dsi_i2c_device_init(uint8_t blsp_id, uint8_t qup_id)
{ 
   
	if(BLSP_ID_2 == blsp_id) { 
   
		i2c8_dev = qup_blsp_i2c_init(blsp_id, qup_id,
					I2C_CLK_FREQ, I2C_SRC_CLK_FREQ);
		if(!i2c8_dev) { 
   
			dprintf(CRITICAL, "mipi_dsi_i2c_device_init() failed\n");
			return ERR_NOT_VALID;
		}
	}
	else
	{ 
   
		i2c_dev = qup_blsp_i2c_init(blsp_id, qup_id,
					I2C_CLK_FREQ, I2C_SRC_CLK_FREQ);
		if(!i2c_dev) { 
   
			dprintf(CRITICAL, "mipi_dsi_i2c_device_init() failed\n");
			return ERR_NOT_VALID;
		}

	}
	return NO_ERROR;
}
//i2c_qup.c
#include <blsp_qup.h>
#include <platform.h>

static struct qup_i2c_dev *dev_addr = NULL;
static struct qup_i2c_dev *dev8_addr = NULL;

struct qup_i2c_dev *qup_blsp_i2c_init(uint8_t blsp_id, uint8_t qup_id,
									  uint32_t clk_freq, uint32_t src_clk_freq)
{ 
   
	struct qup_i2c_dev *dev;

	if(BLSP_ID_2 == blsp_id)
	{ 
   
		if (dev8_addr != NULL) { 
   
			return dev8_addr;
		}
	}
	else 
	{ 
   
		if (dev_addr != NULL) { 
   
			return dev_addr;
		}
	}
	
	dev = malloc(sizeof(struct qup_i2c_dev));
	if (!dev) { 
   
		return NULL;
	}
	dev = memset(dev, 0, sizeof(struct qup_i2c_dev));

	/* Platform uses BLSP */
	dev->qup_irq = BLSP_QUP_IRQ(blsp_id, qup_id);
	dev->qup_base = BLSP_QUP_BASE(blsp_id, qup_id);

	/* This must be done for qup_i2c_interrupt to work. */
	if(BLSP_ID_2 == blsp_id)
		dev8_addr = dev;
	else
		dev_addr = dev;

	/* Initialize the GPIO for BLSP i2c */
	gpio_config_blsp_i2c(blsp_id, qup_id);

	clock_config_blsp_i2c(blsp_id, qup_id);

	qup_i2c_sec_init(dev, clk_freq, src_clk_freq);

	return dev;
}

添加I2C8操作函数

// i2c_qup.c
int mipi_dsi_i2c8_read_bytes(uint8_t addr, uint8_t *reg, uint8_t *buf, uint8_t len)
{ 
   
		
	if (!buf)
		return ERR_INVALID_ARGS;

	if(!i2c8_dev)
		return ERR_NOT_VALID;

	struct i2c_msg rd_buf[] = { 
   
		{ 
   addr, I2C_M_WR, 2, reg},
		{ 
   addr, I2C_M_RD, len, buf}
	};

	int err = qup_i2c_xfer(i2c8_dev, rd_buf, 2);
	if (err < 0) { 
   
		dprintf(CRITICAL, "Read reg %x failed\n", (int)reg[0]);
		return err;
	}

	return NO_ERROR;
}

int mipi_dsi_i2c8_write_bytes(uint8_t addr, uint8_t *reg, uint32_t len)
{ 
   
	if (!i2c8_dev)
		return ERR_NOT_VALID;
	
	struct i2c_msg msg_buf[] = { 
   
		{ 
   addr, I2C_M_WR, len, reg},
	};

	int err = qup_i2c_xfer(i2c8_dev, msg_buf, 1);
	if (err < 0) { 
   
		dprintf(CRITICAL, "Write reg %x failed\n", (int)reg[0]);
		return err;
	}
	return NO_ERROR;
}


int mipi_dsi_i2c8_read(uint8_t addr, uint8_t reg, uint8_t *buf, uint8_t len)
{ 
   
	if (!buf)
		return ERR_INVALID_ARGS;

	if(!i2c8_dev)
		return ERR_NOT_VALID;

	struct i2c_msg rd_buf[] = { 
   
		{ 
   addr, I2C_M_WR, 1, &reg},
		{ 
   addr, I2C_M_RD, len, buf}
	};

	int err = qup_i2c_xfer(i2c8_dev, rd_buf, 2);
	if (err < 0) { 
   
		dprintf(CRITICAL, "Read reg %x failed\n", reg);
		return err;
	}

	return NO_ERROR;
}

int mipi_dsi_i2c8_read_byte(uint8_t addr, uint8_t reg, uint8_t *buf)
{ 
   
	if (!buf)
		return ERR_INVALID_ARGS;

	return mipi_dsi_i2c8_read(addr, reg, buf, 1);
}

int mipi_dsi_i2c8_write_byte(uint8_t addr, uint8_t reg, uint8_t val)
{ 
   
	if (!i2c8_dev)
		return ERR_NOT_VALID;

	unsigned char buf[2] = { 
   reg, val};
	struct i2c_msg msg_buf[] = { 
   
		{ 
   addr, I2C_M_WR, 2, buf},
	};

	int err = qup_i2c_xfer(i2c8_dev, msg_buf, 1);
	if (err < 0) { 
   
		dprintf(CRITICAL, "Write reg %x failed\n", reg);
		return err;
	}
	return NO_ERROR;
}

声明函数

// mipi_dsi_i2c.h

int mipi_dsi_i2c8_read_bytes(uint8_t addr, uint8_t *reg, uint8_t *buf, uint8_t len);
int mipi_dsi_i2c8_write_bytes(uint8_t addr, uint8_t *reg, uint32_t len);
int mipi_dsi_i2c8_read_byte(uint8_t addr, uint8_t reg, uint8_t *buf);
int mipi_dsi_i2c8_write_byte(uint8_t addr, uint8_t reg, uint8_t val);
int mipi_dsi_i2c8_read(uint8_t addr, uint8_t reg, uint8_t *buf, uint8_t len);

查看文档,可以得知IRQ计算公式为:

#define BLSP_QUP_IRQ(blsp_id, qup_id) (GIC_SPI_START + 95 + (blsp_id-1)*204 + qup_id)

物理地址计算公式为:

#define BLSP_QUP_BASE(blsp_id, qup_id) (PERIPH_SS_BASE + ((blsp_id) - 1) * 0x240000 \ + 0xB5000 + 0x1000 * (qup_id))

2、 Configure the GPIO.

// bootloader/lk/platform/msm8953/gpio.c
#define GPIO_BLSP1_ACTIVE_1 10
#define GPIO_BLSP1_ACTIVE_2 11

#define GPIO_BLSP2_ACTIVE_1 98
#define GPIO_BLSP2_ACTIVE_2 99

void gpio_config_blsp_i2c(uint8_t blsp_id, uint8_t qup_id)
{ 
   
	if(blsp_id == BLSP_ID_1) { 
   
		switch (qup_id) { 
   
			case QUP_ID_2:
				/* configure I2C SDA gpio */
				gpio_tlmm_config(GPIO_BLSP1_ACTIVE_1, 2, GPIO_OUTPUT,
					GPIO_NO_PULL, GPIO_6MA, GPIO_ENABLE);

				/* configure I2C SCL gpio */
				gpio_tlmm_config(GPIO_BLSP1_ACTIVE_2, 2, GPIO_OUTPUT,
					GPIO_NO_PULL, GPIO_6MA, GPIO_ENABLE);

			break;
			default:
				dprintf(CRITICAL, "Incorrect QUP id %d\n", qup_id);
				ASSERT(0);
		};
	}
	else if(blsp_id == BLSP_ID_2) { 
   
		switch (qup_id) { 
   
			case QUP_ID_3:
				/* configure I2C SDA gpio */
				gpio_tlmm_config(GPIO_BLSP2_ACTIVE_1, 1, GPIO_OUTPUT,
					GPIO_PULL_UP, GPIO_6MA, GPIO_ENABLE);

				/* configure I2C SCL gpio */
				gpio_tlmm_config(GPIO_BLSP2_ACTIVE_2, 1, GPIO_OUTPUT,
					GPIO_PULL_UP, GPIO_6MA, GPIO_ENABLE);
			break;
			default:
				dprintf(CRITICAL, "Incorrect QUP id %d\n", qup_id);
				ASSERT(0);
		};
	}	
	else { 
   
		dprintf(CRITICAL, "Incorrect BLSP id %d\n",blsp_id);
		ASSERT(0);
	}
}

3、Register a clock.

// bootable/bootloader/lk/platform/msm8953/acpuclock.c.
void clock_config_blsp_i2c(uint8_t blsp_id, uint8_t qup_id)
{ 
   
	uint8_t ret = 0;
	char clk_name[64];

	struct clk *qup_clk;

	if((blsp_id != BLSP_ID_1 && blsp_id != BLSP_ID_2)) { 
   
		dprintf(CRITICAL, "Incorrect BLSP-%d or QUP-%d configuration\n",
			blsp_id, qup_id);
		ASSERT(0);
	}
	if(blsp_id == BLSP_ID_1){ 
   

		if (qup_id == QUP_ID_2) { 
   
			snprintf(clk_name, sizeof(clk_name), "blsp1_qup3_ahb_iface_clk");
		}
		else if (qup_id == QUP_ID_3) { 
   
			snprintf(clk_name, sizeof(clk_name), "blsp1_qup4_ahb_iface_clk");
		}
	}
	
	if(blsp_id == BLSP_ID_2){ 
   
		if (qup_id == QUP_ID_3) { 
   
			snprintf(clk_name, sizeof(clk_name), "blsp2_qup4_ahb_iface_clk");
		}
	}

	ret = clk_get_set_enable(clk_name, 0 , 1);
	if (ret) { 
   
		dprintf(CRITICAL, "Failed to enable %s clock\n", clk_name);
		return;
	}

	if(blsp_id == BLSP_ID_1){ 
   
		if (qup_id == QUP_ID_2) { 
   
			snprintf(clk_name, sizeof(clk_name), "gcc_blsp1_qup3_i2c_apps_clk");
		}
		else if (qup_id == QUP_ID_3) { 
   
			snprintf(clk_name, sizeof(clk_name), "gcc_blsp1_qup4_i2c_apps_clk");
		}
	}
	if(blsp_id == BLSP_ID_2){ 
   
		if (qup_id == QUP_ID_3) { 
   
			snprintf(clk_name, sizeof(clk_name), "gcc_blsp2_qup4_i2c_apps_clk");
		}
	}
	qup_clk = clk_get(clk_name);
	if (!qup_clk) { 
   
		dprintf(CRITICAL, "Failed to get %s\n", clk_name);
		return;
	}

	ret = clk_enable(qup_clk);
	if (ret) { 
   
		dprintf(CRITICAL, "Failed to enable %s\n", clk_name);
		return;
	}
}
// bootable/bootloader/lk/platform/msm8953/msm8953-clock.c.

static struct vote_clk gcc_blsp2_ahb_clk = { 
   
	.cbcr_reg     = (uint32_t *) BLSP2_AHB_CBCR,
	.vote_reg     = (uint32_t *) APCS_CLOCK_BRANCH_ENA_VOTE,
	.en_mask      = BIT(20),

	.c = { 
   
		.dbg_name = "gcc_blsp2_ahb_clk",
		.ops      = &clk_ops_vote,
	},
};

static struct clk_freq_tbl ftbl_gcc_blsp1_qup2_i2c_apps_clk_src[] = { 
   
	F(      96000,    cxo,  10,   1,  2),
	F(    4800000,    cxo,   4,   0,  0),
	F(    9600000,    cxo,   2,   0,  0),
	F(   16000000,  gpll0,  10,   1,  5),
	F(   19200000,  gpll0,   1,   0,  0),
	F(   25000000,  gpll0,  16,   1,  2),
	F(   50000000,  gpll0,  16,   0,  0),
	F_END
};

static struct rcg_clk gcc_blsp1_qup2_i2c_apps_clk_src = { 
   
	.cmd_reg      = (uint32_t *) GCC_BLSP1_QUP2_CMD_RCGR,
	.cfg_reg      = (uint32_t *) GCC_BLSP1_QUP2_CFG_RCGR,
	.set_rate     = clock_lib2_rcg_set_rate_hid,
	.freq_tbl     = ftbl_gcc_blsp1_qup2_i2c_apps_clk_src,
	.current_freq = &rcg_dummy_freq,

	.c = { 
   
		.dbg_name = "gcc_blsp1_qup2_i2c_apps_clk_src",
		.ops      = &clk_ops_rcg,
	},
};

static struct branch_clk gcc_blsp1_qup2_i2c_apps_clk = { 
   
	.cbcr_reg = (uint32_t *) GCC_BLSP1_QUP2_APPS_CBCR,
	.parent   = &gcc_blsp1_qup2_i2c_apps_clk_src.c,

	.c = { 
   
		.dbg_name = "gcc_blsp1_qup2_i2c_apps_clk",
		.ops      = &clk_ops_branch,
	},
};

static struct clk_freq_tbl ftbl_gcc_blsp1_qup3_i2c_apps_clk_src[] = { 
   
	F(      96000,    cxo,  10,   1,  2),
	F(    4800000,    cxo,   4,   0,  0),
	F(    9600000,    cxo,   2,   0,  0),
	F(   16000000,  gpll0,  10,   1,  5),
	F(   19200000,  gpll0,   1,   0,  0),
	F(   25000000,  gpll0,  16,   1,  2),
	F(   50000000,  gpll0,  16,   0,  0),
	F_END
};

#if 0
static struct clk_freq_tbl ftbl_gcc_blsp2_qup4_i2c_apps_clk_src[] = { 
   
	F(      96000,    cxo,  10,   1,  2),
	F(    4800000,    cxo,   4,   0,  0),
	F(    9600000,    cxo,   2,   0,  0),
	F(   16000000,  gpll0,  10,   1,  5),
	F(   19200000,  gpll0,   1,   0,  0),
	F(   25000000,  gpll0,  16,   1,  2),
	F(   50000000,  gpll0,  16,   0,  0),
	F_END
};
#endif

static struct rcg_clk gcc_blsp1_qup3_i2c_apps_clk_src = { 
   
	.cmd_reg      = (uint32_t *) GCC_BLSP1_QUP3_CMD_RCGR,
	.cfg_reg      = (uint32_t *) GCC_BLSP1_QUP3_CFG_RCGR,
	.set_rate     = clock_lib2_rcg_set_rate_hid,
	.freq_tbl     = ftbl_gcc_blsp1_qup3_i2c_apps_clk_src,
	.current_freq = &rcg_dummy_freq,

	.c = { 
   
		.dbg_name = "gcc_blsp1_qup3_i2c_apps_clk_src",
		.ops      = &clk_ops_rcg,
	},
};

static struct rcg_clk gcc_blsp2_qup4_i2c_apps_clk_src = { 
   
	.cmd_reg      = (uint32_t *) GCC_BLSP2_QUP4_CMD_RCGR,
	.cfg_reg      = (uint32_t *) GCC_BLSP2_QUP4_CFG_RCGR,
	.set_rate     = clock_lib2_rcg_set_rate_hid,
// .freq_tbl = ftbl_gcc_blsp2_qup4_i2c_apps_clk_src,
	.freq_tbl	  = ftbl_gcc_blsp1_qup3_i2c_apps_clk_src,
	.current_freq = &rcg_dummy_freq,

	.c = { 
   
		.dbg_name = "gcc_blsp2_qup4_i2c_apps_clk_src",
		.ops      = &clk_ops_rcg,
	},
};

static struct branch_clk gcc_blsp1_qup3_i2c_apps_clk = { 
   
	.cbcr_reg = (uint32_t *) GCC_BLSP1_QUP3_APPS_CBCR,
	.parent   = &gcc_blsp1_qup3_i2c_apps_clk_src.c,

	.c = { 
   
		.dbg_name = "gcc_blsp1_qup3_i2c_apps_clk",
		.ops      = &clk_ops_branch,
	},
};

static struct branch_clk gcc_blsp2_qup4_i2c_apps_clk = { 
   
	.cbcr_reg = (uint32_t *) GCC_BLSP2_QUP4_APPS_CBCR,
	.parent   = &gcc_blsp2_qup4_i2c_apps_clk_src.c,

	.c = { 
   
		.dbg_name = "gcc_blsp2_qup4_i2c_apps_clk",
		.ops      = &clk_ops_branch,
	},
};


static struct clk_freq_tbl ftbl_mdss_esc1_1_clk[] = { 
   
	F_MM(19200000,    cxo,   1,   0,   0),
	F_END
};

static struct rcg_clk dsi_esc1_clk_src = { 
   
	.cmd_reg  = (uint32_t *) DSI_ESC1_CMD_RCGR,
	.cfg_reg  = (uint32_t *) DSI_ESC1_CFG_RCGR,
	.set_rate = clock_lib2_rcg_set_rate_hid,
	.freq_tbl = ftbl_mdss_esc1_1_clk,

	.c        = { 
   
		.dbg_name = "dsi_esc1_clk_src",
		.ops      = &clk_ops_rcg,
	},
};

static struct branch_clk mdss_esc1_clk = { 
   
	.cbcr_reg    = (uint32_t *) DSI_ESC1_CBCR,
	.parent      = &dsi_esc1_clk_src.c,
	.has_sibling = 0,

	.c           = { 
   
		.dbg_name = "mdss_esc1_clk",
		.ops      = &clk_ops_branch,
	},
};

static struct clk_lookup msm_clocks_8953[] =
{ 
   
...
/*add start by Yubel for blsp 20200730 */
	/* BLSP CLOCKS */
	CLK_LOOKUP("blsp1_qup2_ahb_iface_clk", gcc_blsp1_ahb_clk.c),
	CLK_LOOKUP("gcc_blsp1_qup2_i2c_apps_clk_src",
		gcc_blsp1_qup2_i2c_apps_clk_src.c),
	CLK_LOOKUP("gcc_blsp1_qup2_i2c_apps_clk",
		gcc_blsp1_qup2_i2c_apps_clk.c),

	CLK_LOOKUP("blsp1_qup3_ahb_iface_clk", gcc_blsp1_ahb_clk.c),
	CLK_LOOKUP("gcc_blsp1_qup3_i2c_apps_clk_src",
		gcc_blsp1_qup3_i2c_apps_clk_src.c),
	CLK_LOOKUP("gcc_blsp1_qup3_i2c_apps_clk",
		gcc_blsp1_qup3_i2c_apps_clk.c),

	CLK_LOOKUP("blsp2_qup4_ahb_iface_clk", gcc_blsp2_ahb_clk.c),
	CLK_LOOKUP("gcc_blsp2_qup4_i2c_apps_clk_src",
		gcc_blsp2_qup4_i2c_apps_clk_src.c),
	CLK_LOOKUP("gcc_blsp2_qup4_i2c_apps_clk",
		gcc_blsp2_qup4_i2c_apps_clk.c),

/*add end by Yubel 20200730 */
...	
};

通过kernel中配置I2C的代码可知

#define GCC_BLSP1_QUP3_APPS_CBCR (CLK_CTL_BASE + 0x04020)
#define GCC_BLSP1_QUP3_CFG_RCGR (CLK_CTL_BASE + 0x04004)
#define GCC_BLSP1_QUP3_CMD_RCGR (CLK_CTL_BASE + 0x04000)
	
#define GCC_BLSP1_QUP2_APPS_CBCR (CLK_CTL_BASE + 0x03010)
#define GCC_BLSP1_QUP2_CFG_RCGR (CLK_CTL_BASE + 0x03004)
#define GCC_BLSP1_QUP2_CMD_RCGR (CLK_CTL_BASE + 0x03000)

#define BLSP2_AHB_CBCR (CLK_CTL_BASE + 0x0B008)

#define GCC_BLSP2_QUP4_APPS_CBCR (CLK_CTL_BASE + 0x18020)
#define GCC_BLSP2_QUP4_CFG_RCGR (CLK_CTL_BASE + 0x18004)
#define GCC_BLSP2_QUP4_CMD_RCGR (CLK_CTL_BASE + 0x18000)

测试用例

// bootable/bootloader/lk/app/tests/my_i2c_test.c.
#include <ctype.h>
#include <debug.h>
#include <stdlib.h>
#include <printf.h>
#include <list.h>
#include <string.h>
#include <arch/ops.h>
#include <platform.h>
#include <platform/debug.h>
#include <kernel/thread.h>
#include <kernel/timer.h>
#ifdef WITH_LIB_CONSOLE
#include <lib/console.h>
static int cmd_i2c_test(int argc, const cmd_args *argv);
STATIC_COMMAND_START
 { 
    "i2c_test", "i2c test cmd", &cmd_i2c_test },
STATIC_COMMAND_END(my_i2c_test);
static int cmd_i2c_test(int argc, const cmd_args *argv)
{ 
   
 printf("Entering i2c_test\n");
 return 0;
}
#endif

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请联系我们举报,一经查实,本站将立刻删除。

发布者:全栈程序员-站长,转载请注明出处:https://javaforall.net/180313.html原文链接:https://javaforall.net

(0)
全栈程序员-站长的头像全栈程序员-站长


相关推荐

  • MyBatis 二级缓存机制[通俗易懂]

    MyBatis 二级缓存机制[通俗易懂]MyBatis 二级缓存机制

    2022年4月23日
    41
  • 实现watch命令

    实现watch命令

    2021年8月28日
    46
  • hadoop集群中zkfc的作用和工作过程

    hadoop集群中zkfc的作用和工作过程hadoop集群中zkfc的作用和工作过程

    2022年4月23日
    57
  • 神经网络优化(初始化权重)

    神经网络优化(初始化权重)使隐藏层饱和了,跟之前我们说的输出层饱和问题相似,对于输出层,我们用改进的cost函数,比如cross-entropy,但是对于隐藏层,我们无法通过cost函数来改进更好的方法来初始化权重?因为传统的初始化权重问题是用标准正态分布(均值为0,方差为1)随机初始化的,这其实是存在不合理的部分。标准正态分布:可以看出真实数据的

    2022年9月27日
    0
  • 关于代理服务器的原理及用法「建议收藏」

    关于代理服务器的原理及用法「建议收藏」关于代理服务器的原理及用法一,什么是代理服务器(Proxy)?答:以类似代理人的身份去取的用户需要的数据。由于它的【代理】能力,使得我们可以透过代理服务器来达成防火墙与用户数据的分析。除此之外我们还可以借助代理服务器来达成节省带宽的目的,以及加快内部网络对因特网的万维网的访问速度。当客户端有因特网的数据要求时,Proxy会帮用户去向目的地取得用户所需要的数据。所以当客户端指定www的代理服务器之后,用户的所有www相关要求就会通过代理服务器去捉取。代理服务器会架设在整个区网的单点对外防火墙上头,而在区

    2022年5月4日
    88
  • 图基本概念与常用算法

    图基本概念与常用算法

    2021年10月6日
    34

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

关注全栈程序员社区公众号