spi协议详解_spi传输协议

spi协议详解_spi传输协议说明.文章摘自:SPI协议及其工作原理浅析 http://bbs.chinaunix.net/thread-1916003-1-1.html一、概述.    SPI,SerialPerripheralInterface,串行外围设备接口,是Motorola公司推出的一种同步串行接口技术.SPI总线在物理上是通过接在外围设备微控制器(PICmicro)上面的微处

大家好,又见面了,我是你们的朋友全栈君。如果您正在找激活码,请点击查看最新教程,关注关注公众号 “全栈程序员社区” 获取激活教程,可能之前旧版本教程已经失效.最新Idea2022.1教程亲测有效,一键激活。

Jetbrains全系列IDE稳定放心使用

说明.文章摘自:SPI协议及其工作原理浅析 http://bbs.chinaunix.net/thread-1916003-1-1.html

一、概述.



     SPI, Serial Perripheral Interface, 串行外围设备接口, 是 Motorola 公司推出的一种同步串行接口技术. SPI 总线在物理上是通过接在外围设备微控制器(PICmicro) 上面的微处理控制单元 (MCU) 上叫作同步串行端口(Synchronous Serial Port) 的模块(Module)来实现的, 它允许 MCU 以全双工的同步串行方式, 与各种外围设备进行高速数据通信.




     SPI 主要应用在 EEPROM, Flash, 实时时钟(RTC), 数模转换器(ADC), 数字信号处理器(DSP) 以及数字信号解码器之间. 它在芯片中只占用四根管脚 (Pin) 用来控制以及数据传输, 节约了芯片的 pin 数目, 同时为 PCB 在布局上节省了空间. 正是出于这种简单易用的特性, 现在越来越多的芯片上都集成了 SPI技术.






二、 特点




     1. 采用主-从模式(Master-Slave) 的控制方式




       SPI 规定了两个 SPI 设备之间通信必须由主设备 (Master) 来控制次设备 (Slave). 一个 Master 设备可以通过提供 Clock 以及对 Slave 设备进行片选 (Slave Select) 来控制多个 Slave 设备, SPI 协议还规定 Slave 设备的 Clock 由 Master 设备通过 SCK 管脚提供给 Slave 设备, Slave 设备本身不能产生或控制 Clock, 没有 Clock 则 Slave 设备不能正常工作.




     2. 采用同步方式(Synchronous)传输数据




       Master 设备会根据将要交换的数据来产生相应的时钟脉冲(Clock Pulse), 时钟脉冲组成了时钟信号(Clock Signal) , 时钟信号通过时钟极性 (CPOL) 和 时钟相位 (CPHA) 控制着两个 SPI 设备间何时数据交换以及何时对接收到的数据进行采样, 来保证数据在两个设备之间是同步传输的.




     3. 数据交换(Data Exchanges)




       SPI 设备间的数据传输之所以又被称为数据交换, 是因为 SPI 协议规定一个 SPI 设备不能在数据通信过程中仅仅只充当一个 “发送者(Transmitter)” 或者 “接收者(Receiver)”. 在每个 Clock 周期内, SPI 设备都会发送并接收一个 bit 大小的数据, 相当于该设备有一个 bit 大小的数据被交换了.




       一个 Slave 设备要想能够接收到 Master 发过来的控制信号, 必须在此之前能够被 Master 设备进行访问 (Access). 所以, Master 设备必须首先通过 SS/CS pin 对 Slave 设备进行片选, 把想要访问的 Slave 设备选上.




       在数据传输的过程中,  每次接收到的数据必须在下一次数据传输之前被采样. 如果之前接收到的数据没有被读取, 那么这些已经接收完成的数据将有可能会被丢弃,  导致 SPI 物理模块最终失效. 因此, 在程序中一般都会在 SPI 传输完数据后, 去读取 SPI 设备里的数据, 即使这些数据(Dummy Data)在我们的程序里是无用的.






三、 工作机制




     1. 概述




       
overview.jpeg
 





      上图只是对 SPI 设备间通信的一个简单的描述, 下面就来解释一下图中所示的几个组件(Module):




       SSPBUF, Synchronous Serial Port Buffer, 泛指 SPI 设备里面的内部缓冲区, 一般在物理上是以 FIFO 的形式, 保存传输过程中的临时数据;




       SSPSR, Synchronous Serial Port Register, 泛指 SPI 设备里面的移位寄存器(Shift Regitser), 它的作用是根据设置好的数据位宽(bit-width) 把数据移入或者移出 SSPBUF;




       Controller, 泛指 SPI 设备里面的控制寄存器, 可以通过配置它们来设置 SPI 总线的传输模式.




        通常情况下, 我们只需要对上图所描述的四个管脚(pin) 进行编程即可控制整个 SPI 设备之间的数据通信:




        SCK, Serial Clock, 主要的作用是 Master 设备往 Slave 设备传输时钟信号, 控制数据交换的时机以及速率;




        SS/CS, Slave Select/Chip Select, 用于 Master 设备片选 Slave 设备, 使被选中的 Slave 设备能够被 Master 设备所访问;




        SDO/MOSI, Serial Data Output/Master Out Slave In, 在 Master 上面也被称为 Tx-Channel, 作为数据的出口, 主要用于 SPI 设备发送数据;




        SDI/MISO, Serial Data Input/Master In Slave Out, 在 Master 上面也被称为 Rx-Channel, 作为数据的入口, 主要用于SPI 设备接收数据;




        SPI 设备在进行通信的过程中, Master 设备和 Slave 设备之间会产生一个数据链路回环(Data Loop), 就像上图所画的那样, 通过 SDO 和 SDI 管脚, SSPSR 控制数据移入移出 SSPBUF, Controller 确定 SPI 总线的通信模式, SCK 传输时钟信号.






      2. Timing.




         
clock.jpeg
 





        上图通过 Master 设备与 Slave 设备之间交换1 Byte 数据来说明 SPI 协议的工作机制.




        首先,  在这里解释一下两个概念:


        CPOL: 时钟极性, 表示 SPI 在空闲时, 时钟信号是高电平还是低电平. 若 CPOL 被设为 1, 那么该设备在空闲时 SCK 管脚下的时钟信号为高电平. 当 CPOL 被设为 0 时则正好相反.




        CPHA: 时钟相位, 表示 SPI 设备是在 SCK 管脚上的时钟信号变为上升沿时触发数据采样, 还是在时钟信号变为下降沿时触发数据采样. 若 CPHA 被设置为 1, 则 SPI 设备在时钟信号变为下降沿时触发数据采样, 在上升沿时发送数据. 当 CPHA 被设为 0 时也正好相反.


  




        上图里的 “Mode 1, 1” 说明了本例所使用的 SPI 数据传输模式被设置成 CPOL = 1, CPHA = 1. 这样, 在一个 Clock 周期内, 每个单独的 SPI 设备都能以全双工(Full-Duplex) 的方式, 同时发送和接收 1 bit 数据, 即相当于交换了 1 bit 大小的数据. 如果 SPI 总线的 Channel-Width 被设置成 Byte, 表示 SPI 总线上每次数据传输的最小单位为 Byte, 那么挂载在该 SPI 总线的设备每次数据传输的过程至少需要 8 个 Clock 周期(忽略设备的物理延迟). 因此, SPI 总线的频率越快, Clock 周期越短, 则 SPI 设备间数据交换的速率就越快.






     3. SSPSR.




         
sspsr.jpeg
 





        SSPSR 是 SPI 设备内部的移位寄存器(Shift Register). 它的主要作用是根据 SPI 时钟信号状态, 往 SSPBUF 里移入或者移出数据, 每次移动的数据大小由 Bus-Width 以及 Channel-Width 所决定.




        Bus-Width 的作用是指定地址总线到 Master 设备之间数据传输的单位.


        例如, 我们想要往 Master 设备里面的 SSPBUF 写入 16 Byte 大小的数据: 首先, 给 Master 设备的配置寄存器设置 Bus-Width 为 Byte; 然后往 Master 设备的 Tx-Data 移位寄存器在地址总线的入口写入数据, 每次写入 1 Byte 大小的数据(使用 writeb 函数); 写完 1 Byte 数据之后, Master 设备里面的 Tx-Data 移位寄存器会自动把从地址总线传来的1 Byte 数据移入 SSPBUF 里; 上述动作一共需要重复执行 16 次.




        Channel-Width 的作用是指定 Master 设备与 Slave 设备之间数据传输的单位. 与 Bus-Width 相似,  Master 设备内部的移位寄存器会依据 Channel-Width 自动地把数据从 Master-SSPBUF 里通过 Master-SDO 管脚搬运到 Slave 设备里的 Slave-SDI 引脚, Slave-SSPSR 再把每次接收的数据移入 Slave-SSPBUF里.




        通常情况下, Bus-Width 总是会大于或等于 Channel-Width, 这样能保证不会出现因 Master 与 Slave 之间数据交换的频率比地址总线与 Master 之间的数据交换频率要快, 导致 SSPBUF 里面存放的数据为无效数据这样的情况.






        4. SSPBUF.




          
sspbuf.jpeg
 





          我们知道, 在每个时钟周期内, Master 与 Slave 之间交换的数据其实都是 SPI 内部移位寄存器从 SSPBUF 里面拷贝的. 我们可以通过往 SSPBUF 对应的寄存器 (Tx-Data / Rx-Data register) 里读写数据, 间接地操控 SPI 设备内部的 SSPBUF.




          例如, 在发送数据之前, 我们应该先往 Master 的 Tx-Data 寄存器写入将要发送出去的数据, 这些数据会被 Master-SSPSR 移位寄存器根据 Bus-Width 自动移入 Master-SSPBUF 里, 然后这些数据又会被 Master-SSPSR 根据 Channel-Width 从 Master-SSPBUF 中移出, 通过 Master-SDO  管脚传给 Slave-SDI 管脚,  Slave-SSPSR 则把从  Slave-SDI 接收到的数据移入 Slave-SSPBUF 里.  与此同时, Slave-SSPBUF 里面的数据根据每次接收数据的大小(Channel-Width), 通过 Slave-SDO 发往 Master-SDI, Master-SSPSR 再把从 Master-SDI 接收的数据移入 Master-SSPBUF.在单次数据传输完成之后, 用户程序可以通过从 Master 设备的 Rx-Data 寄存器读取 Master 设备数据交换得到的数据.






         5. Controller.




          
controller.jpeg
 





          Master 设备里面的 Controller 主要通过时钟信号(Clock Signal)以及片选信号(Slave Select Signal)来控制 Slave 设备. Slave 设备会一直等待, 直到接收到 Master 设备发过来的片选信号, 然后根据时钟信号来工作.




          Master 设备的片选操作必须由程序所实现. 例如: 由程序把 SS/CS 管脚的时钟信号拉低电平, 完成 SPI 设备数据通信的前期工作; 当程序想让 SPI 设备结束数据通信时, 再把 SS/CS 管脚上的时钟信号拉高电平.

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请联系我们举报,一经查实,本站将立刻删除。

发布者:全栈程序员-站长,转载请注明出处:https://javaforall.net/181812.html原文链接:https://javaforall.net

(0)
全栈程序员-站长的头像全栈程序员-站长


相关推荐

  • Java项目毕业设计:基于springboot+vue的电影视频网站系统「建议收藏」

    Java项目毕业设计:基于springboot+vue的电影视频网站系统「建议收藏」运行环境:开发工具:IDEA/Eclipse数据库:MYSQL5.7应用服务:Tomcat7/Tomcat8使用框架springboot+vue项目介绍影城管理系统的主要使用者分为管理员和用户,实现功能包括管理员:首页、个人中心、用户管理、电影类型管理、放映厅管理、电影信息管理、购票统计管理、系统管理、订单管理,用户前台:首页、电影信息、电影资讯、个人中心、后台管理、在线客服等功能。由于本网站的功能模块设计比较全面,所以使得整个影城管理系统信息管理的过程得以实现。效果图控制器类

    2022年8月22日
    7
  • 【博弈论】常见总结「建议收藏」

    【博弈论】常见总结「建议收藏」每次看到博弈论的题目就很脑阔疼平衡状态,又称作奇异局势。当面对这个局势时则会失败。任意非平衡态经过一次操作可以变为平衡态。先手能够在初始为非平衡的游戏中取胜,后手能够在初始为平衡的游戏中取胜。SG函数待补两个博客12来源12一、巴仕博弈(BashGame)1堆题目HDU1846有一堆物品,两个人轮流从这堆物品中取物,规定每次至少取一个,最多取m个。最后取光…

    2022年10月15日
    2
  • 遍历Arraylist的三种方法及优缺点简单介绍

    遍历Arraylist的三种方法及优缺点简单介绍集合ArrayList是接口List的一种子类,它的特点是:存储的元素是有序的.底层的数据结构是数组.查询快,增删慢.在众多集合中ArrayList的遍历又是比较特殊的,下面就写一下它的三种遍历方式,代码如下:第一种遍历方式:普通for循环第二种遍历方式:增强for循环第三种遍历方式:迭代器importjava.util.ArrayList;importjava.util.Iterator;/***PACKAGE_NAME*/publicclassDemo.

    2022年7月22日
    8
  • Python编程题2–水仙花数

    Python编程题2–水仙花数题目如果一个3位数等于其各位数字的立方和,则称这个数为水仙花数。例如:153=13+53+3^3,因此153就是一个水仙花数请按照从小到大的顺序输出1000以内的水仙花数

    2022年7月5日
    21
  • 小学没跟上编程的步伐,长大了这样弥补,网友:一切都是为了生活「建议收藏」

    小学没跟上编程的步伐,长大了这样弥补,网友:一切都是为了生活「建议收藏」浙江省今年9月份开始的新学期,三到九年级信息技术课将同步替换新教材,其中,八年级将新增Python课程内容。新高一信息技术编程语言由VB替换为Python,大数据、人工智能、程序设计与算法等内容按照教材规划五六年级开始接触。随着我国北京、上海、广州、重庆、江苏等多地政策推广少儿编程教育的力度逐步增大,家长们愈发重视编程教育,一方面可以为高考选中的信息技术课程做铺垫,另一方面从小培养大数据意识。因为学习少儿编程除了帮孩子适应未来时代发展潮流,还可以培养孩子的抽象思考能力,帮助孩子训练整合信息、融汇贯通

    2022年5月16日
    40
  • 三态门(三态缓冲器)的工作原理[通俗易懂]

    三态门(三态缓冲器)的工作原理[通俗易懂]转载于http://www.eeworld.com.cn/mcu/article_2017102035218.html为减少信息传输线的数目,大多数计算机中的信息传输线均采用总线形式,即凡要传输的同

    2022年8月1日
    10

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

关注全栈程序员社区公众号