f1-score是什么_python概念题

f1-score是什么_python概念题一、F1score概念?F1score是分类问题的一个衡量指标,一些多分类问题的机器学习竞赛,常把F1score作为最终评测的方法。它是精确率和召回率的调和平均数,取值0-1之间。F1score认为召回率和精确率同样重要,而F2认为召回率的重要程度是精确率的2倍,F0.5则认为召回率的重要程度是精确率的一半。要明确几个概念TP(TruePositive):被判定为正样本,实际为正样本 TN(TrueNegative):被判定为负样本,实际为负样本 FP(FalseP

大家好,又见面了,我是你们的朋友全栈君。如果您正在找激活码,请点击查看最新教程,关注关注公众号 “全栈程序员社区” 获取激活教程,可能之前旧版本教程已经失效.最新Idea2022.1教程亲测有效,一键激活。

Jetbrains全系列IDE稳定放心使用

一、F1 score概念?

F1 score是分类问题的一个衡量指标,一些多分类问题的机器学习竞赛,常把F1 score作为最终评测的方法。它是精确率和召回率的调和平均数,取值0-1之间。

F1 score认为召回率和精确率同样重要,而F2认为召回率的重要程度是精确率的2倍,F0.5则认为召回率的重要程度是精确率的一半。

F_{1}=2\frac{precision\cdot recall}{precision+recall}

要明确几个概念

  • TP(True Positive): 被判定为正样本,实际为正样本
  • TN(True Negative): 被判定为负样本,实际为负样本
  • FP(False Positive): 被判定为正样本,实际为负样本
  • FN(False Negative): 被判定为负样本,实际为正样本
  • accuracy:准确率,针对所有样本而言,即所有实际正负样本中,判定正确的样本所占的比例。accuracy = (TP + TN)/(TP + TN + FP + FN)
  • precision:精确率(又称为查准率),针对所有判定为正的样本而言,即所有判定为正的样本中,实际为正的样本所占的比例。precision = TP/(TP + FP)
  • recall:召回率(又称为查全率),针对所有实际为正的样本而言,即所有实际为正的样本中,判定为正的样本所占的比例。recall = TP/(TP + FN)

注意:上述所有正负样本描述是针对二分类问题而言,如果是多分类问题,则上述正样本代表第k类样本,负样本代表所有其他类样本。

 

二、F1 score如何计算?

  1. 首先分别计算每一类样本的精确率precision_{k}和召回率recall_{k}
  2. 然后分别计算每一类的F1 score: f1_{k}=2\cdot \frac{precision_{k}\cdot recall_{k}}{precision_{k}+recall_{k}}
  3. 最后对所有类别的F1 score求均值,得到最终结果:F1 score=(\frac{1}{n}\sum f1_{k})^{2}

 

三、python如何实现?

可以通过调用sklearn包实现

函数介绍:

sklearn.metrics.f1_score(y_true, y_pred, labels=None, pos_label=1, average=’binary’, sample_weight=None)

  • y_true: 真实类别,1d array-like, or label indicator array / sparse matrix.
  • y_pred: 预测类别,1d array-like, or label indicator array / sparse matrix.
  • average: string,[None, ‘binary’(default), ‘micro’, ‘macro’, ‘samples’, ‘weighted’],如果二分类则选binary,如果考虑类别的不平衡性,需要计算类别的加权平均,则使用‘weighted’;如果不考虑类别的不平衡性,计算宏平均,则使用‘macro’。

代码示例:

from sklearn.metrics import f1_score

y_true = [0,0,0,1,1,2]
y_pred = [0,0,1,1,2,2]

print(f1_score(y_true, y_pred, average='weighted'))
print(f1_score(y_true, y_pred, average='macro'))

f1-score是什么_python概念题 

 

参考:

https://blog.csdn.net/qq_14997473/article/details/82684300

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请联系我们举报,一经查实,本站将立刻删除。

发布者:全栈程序员-站长,转载请注明出处:https://javaforall.net/182095.html原文链接:https://javaforall.net

(0)
全栈程序员-站长的头像全栈程序员-站长


相关推荐

  • java迭代创建文件,并写入内容

    java迭代创建文件,并写入内容java迭代创建文件,并写入内容

    2022年4月24日
    46
  • Win10 CMD命令大全—超好用快捷键

    Win10 CMD命令大全—超好用快捷键一、WindowsCMD命令大全1、按组合键Win(Windows图标键)+R键打开运行窗口,输入“cmd”按回车即可打开cmd命令提示符2、在窗口右击选择属性可进行个性化设置~命令功能1、calc启动计算器2、appwiz.cpl程序和功能3、certmgr.msc证书管理实用程序4、charmap启动字符映射表5、chkdsk.exeChkdsk磁盘检查(管理员身份运行命令提示符)6、cleanmgr打开磁盘清理工具7、

    2022年5月17日
    873
  • Android sha1_android studio打包apk教程

    Android sha1_android studio打包apk教程目录开发版SHA1获取:发布版SHA1获取:开发版SHA1获取:首先win+r后点击确认输入cd.android再输入命令行:keytool-list-v-keystore~/.android/debug.keystore-aliasandroiddebugkey(注意目录选择、开发版本、发布版本等问题)密码:原始密码一般为android,(输入密码时时没有变化的直接输入回车就行)发布版SHA1获取:需要知道签名文件key.

    2022年8月11日
    3
  • plugins webpack_webpack实现原理

    plugins webpack_webpack实现原理plugin插件是webpack的支柱功能。webpack自身也是构建于你在webpack配置中用到的相同的插件系统之上!插件目的在于解决loader无法实现的其他事。常用的插件

    2022年7月29日
    3
  • Mysql经典练习题50题「建议收藏」

    Mysql经典练习题50题「建议收藏」网上关于这套练习题较多使用的是比较老的mysql版本,我使用的是Serverversion:8.0.15MySQL练习数据数据表–1.学生表Student(SId,Sname,Sage,Ssex)–SId学生编号,Sname学生姓名,Sage出生年月,Ssex学生性别–2.课程表Course(CId,Cname,TId)–CId–课程编号,Cna…

    2022年9月18日
    0
  • java的class文件_java class是什么意思

    java的class文件_java class是什么意思根据 Java 虚拟机规范,类文件由单个 ClassFile 结构组成:ClassFile { u4 magic; //Class 文件的标志 u2 minor_version;//Class 的小版本号 u2 major_version;//Class 的大版本号 u2 constant_pool_count;//常量池的数量 cp_info consta

    2022年8月8日
    2

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

关注全栈程序员社区公众号