机器学习:Multinoulli分布与多项式分布

机器学习:Multinoulli分布与多项式分布学习深度学习时遇见multinoulli分布,在此总结一下机器学习中常用的multinoulli分布与多项式分布之间的区别于关系,以便更好的理解其在机器学习和深度学习中的使用。首先介绍一下其他相关知识。Bernoulli分布(两点分布)Bernoulli分布是单个二值随机变量的分布。它由单个参数控制,给出了随机变量等于1的概率。             …

大家好,又见面了,我是你们的朋友全栈君。如果您正在找激活码,请点击查看最新教程,关注关注公众号 “全栈程序员社区” 获取激活教程,可能之前旧版本教程已经失效.最新Idea2022.1教程亲测有效,一键激活。

Jetbrains全系列IDE稳定放心使用

学习深度学习时遇见multinoulli分布,在此总结一下机器学习中常用的multinoulli分布与多项式分布之间的区别于关系,以便更好的理解其在机器学习和深度学习中的使用。

首先介绍一下其他相关知识。

Bernoulli分布 (两点分布)

Bernoulli分布是单个二值随机变量的分布x\in \left \{ 0,1 \right \}。它由单个参数\mu \in \left [ 0,1 \right ]控制,\phi给出了随机变量等于1的概率。

                   P(X=1)=\mu

                   P(X=0)=1-\mu

                   P(X=x|\mu )=\mu ^{x}(1-\mu )^{1-x}

                   E[X]=\mu

                   Var[X]=\mu(1-\mu)

二项分布(n重Bernoulli分布)

二项分布(binomial distribution)用以描述N次独立的伯努利实验中有m次成功(即x=1)的概率,其中每次伯努利实验成功的概率为\mu \in \left [ 0,1 \right ]

                  P(m|N,u)=\binom{N}{m}\mu ^{m}(1-\mu )^{N-m}

                  E[X]=N\mu

                   Var[X]=N\mu(1-\mu)

多项分布

若将伯努利分布由单变量扩展为d维向量x,其中x_{i} = \left \{ 0,1 \right \}\sum_{i=1}^{d}x_{i}=1,并假设x_{i}取1的概率为\mu_{i} \in \left [ 0,1 \right ],\sum_{i=1}^{d}\mu_{i}=1,则将得到离散概率分布

                P(x|\mu )=\prod_{i=1}^{d}\mu_{i}^{x^{i}}

                E[X_{i}]=\mu_{i}

                Var[X_{i}]=\mu_{i}(1-\mu)_{i}

在此基础上扩展二项分布则得到多项分布(nultinomial distribution),它描述了在N次独立实验中有m_{i}x_{i}=1的概率。 

               P(m_{1},...,m_{d}|N,\mu )=\frac{N!}{m_{1}!...m_{d}!}\prod_{i=1}^{d}\mu_{i}^{m_{i}} 

multinoulli分布(范畴分布、分类分布(categotical distribution))

mutinoulli分布是指在具有k个不同状态的单个离散型随机变量上的分布,其中k是一个有限值。 mutinoulli分布由分布向量p\in \left [ 0,1 \right ]^{k-1}参数化,其中每一个分量p_{i}表示第i个状态的概率。最后的第k个状态的概率可以通过1-1^{T}p给出。注意我们必须限制1^{T}p\leq 1。mutinoulli分布经常用来表示对象分类的分布,所以我们很少假设状态1具有数值1之类的。因此我们通常不需要去计算mutinoulli分布的随机变量的期望和方差。

mutinoulli分布是多项式分布的一个特例。多项式分布是\left \{ 0,...,n \right \}^{k}中的向量的分布,用于表示当对mutinoulli分布采样n次时k个类中的每一个被访问的次数。很多文章使用“多项式分布”而实际上说的是mutinoulli分布,但是他们并没有说是对n=1(一次实验)的情况,这点需要注意。大概意思就是说multinouli分布进行一次实验,得到了各个状态k的概率分布p,多项分布是重复对multinoulli分布进行n次采样实验,看k个类中每一个被采样到的次数。我觉得很像bernoulli分布与二项分布的关系。(大家有不同想法的可以留言讨论!)

参考文献:

《概率论与数理统计》韩旭里,谢永钦

《机器学习》周志华

《深度学习》Ian GoodFellow

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请联系我们举报,一经查实,本站将立刻删除。

发布者:全栈程序员-站长,转载请注明出处:https://javaforall.net/182944.html原文链接:https://javaforall.net

(0)
全栈程序员-站长的头像全栈程序员-站长


相关推荐

  • html中设置背景图片为平铺,html背景图片怎么设置平铺方式

    html中设置背景图片为平铺,html背景图片怎么设置平铺方式在html中,可利用background-repeat属性来设置背景图片的平铺方式;当属性值设置为“repeat”时可向垂直和水平方向平铺,“repeat-x”时可水平平铺,“repeat-y”时可垂直平铺,“no-repeat”时不平铺。本教程操作环境:windows7系统、CSS3&&HTML5版、DellG3电脑。html背景图片设置平铺方式div{border:1px…

    2022年6月1日
    66
  • IDEA- idea代码调试debug

    IDEA有很多的快捷键,下面整理Debug的快捷键,方便自己使用!

    2022年2月26日
    51
  • django request.get_django post请求

    django request.get_django post请求Django在接收到http请求之后,会根据http请求携带的参数以及报文信息创建一个WSGIRequest对象,并且作为视图函数第一个参数传给视图函数。也就是我们经常看到的request参数。在这个

    2022年8月7日
    7
  • 磁盘加密

    磁盘加密

    2022年3月12日
    43
  • resnet18 pytorch_pytorch全连接层

    resnet18 pytorch_pytorch全连接层创建各版本的ResNet模型,ResNet18,ResNet34,ResNet50,ResNet101,ResNet152原文地址:https://arxiv.org/pdf/1512.03385.pdf论文就不解读了,大部分解读都是翻译,看的似懂非懂,自己搞懂就行了。最近想着实现一下经典的网络结构,看了原文之后,根据原文代码结构开始实现。起初去搜了下各种版本的实现,发现很多博客都是错误百出,有些博文都发布几年了,错误还是没人发现,评论区几十号人不知道是真懂还是装懂,颇有些无奈啊。因此打算自己手动实

    2022年10月7日
    3
  • linux添加防火墙规则_linux如何查看防火墙状态

    linux添加防火墙规则_linux如何查看防火墙状态linux防火墙对于我们来说是非常重要的!那么我们要怎么样去配置呢?下面由学习啦小编给你做出详细的linux防火墙配置方法介绍!希望对你有帮助!linux防火墙配置方法一:1./sbin/iptables-AINPUT-ptcp–dport80-jACCEPT2./sbin/iptables-AINPUT-ptcp–dport25-jACCEPT3.ech…

    2022年9月15日
    2

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

关注全栈程序员社区公众号