matlab画三维图像例题_matlab画三维曲面

matlab画三维图像例题_matlab画三维曲面我可能真的太闲了吧···在网上看到这图觉得挺好看:t=0:pi/360:2*pi;x=sin(t);y=cos(t);z=2*x.^2+y.^2;figureplot3(x,y,z,’Color’,’r’,’LineWidth’,2);xlabel(‘x’);ylabel(‘y’);zlabel(‘z’);title(‘z=(cost)^2+2*(sint)^2’);ax…

大家好,又见面了,我是你们的朋友全栈君。如果您正在找激活码,请点击查看最新教程,关注关注公众号 “全栈程序员社区” 获取激活教程,可能之前旧版本教程已经失效.最新Idea2022.1教程亲测有效,一键激活。

Jetbrains全系列IDE稳定放心使用

二维函数的图像必须用三维坐标系画,很多函数的图像长得很好看,很有意思。会可视化也会有利于我们理解更深刻。

(1)plot3,三维曲线图

在网上看到这图觉得挺好看:

t=0:pi/360:2*pi;
x=sin(t);
y=cos(t);
z=2*x.^2+y.^2;
figure
plot3(x,y,z,'Color','r','LineWidth',2);
xlabel('x');
ylabel('y');
zlabel('z');
title('z=(cos t)^2+2*(sin t)^2');
axis([-1.2 1.2 -1.2 1.2 1 2.2]);

在这里插入图片描述

(2)mesh,网面图

clear all,clc;
t=-0.5:.01:0.5;
[x,y]=meshgrid(t);%形成格点矩阵
z=sin(4*pi*x)+cos(6*pi*y);
figure(1)
mesh(x,y,z);
axis([-0.5 0.5 -0.5 0.5 -2 2]);
title('z=sin(4*pi*x)+cos(6*pi*y); mesh')
colormap cool%cool是一种配色方案,还有其他方案如winter,summer····见help colormap
colorbar

在这里插入图片描述

画个二元函数,观察采样后频谱的混叠现象

在这里插入图片描述

二元函数图像的绘制还是把变量分为多个离散点绘制,只是增大点数。

clear all,clc;
t=-1:.01:1;
[x,y]=meshgrid(t);%形成格点矩阵
f=cos(2*pi*(2*x-y));
figure(1)
mesh(x,y,f);grid on
xlabel('x');
ylabel('y');
zlabel('f');
axis([-0.5 0.5 -1 1 -1.5 1.5]);
title('f=cos[2*pi(2x-y)]; mesh')
colormap winter
colorbar

在这里插入图片描述
先手动计算一下它的二位傅里叶变换:
不想打公式(逃)

在这里插入图片描述


F= fft2(f);%做二维DFT变换,把连续函数取样得到一个矩阵,把这个矩阵当图像一样处理
figure(2)
subplot(121),imshow(abs(F),[]);title('函数f=cos(2*pi(2x-y))二维频谱')
F=fftshift(F);%使用matlab的fftshift函数把低频分量移到频谱中心
subplot(122),imshow(abs(F),[]);title('中心化频谱')

在这里插入图片描述

t=-1.1:.333:1.1;%以频率3采样(题目要求)
[x,y]=meshgrid(t);%形成格点矩阵
f=cos(2*pi*(2*x-y));
figure(1)
mesh(x,y,f);grid on
xlabel('x');
ylabel('y');
zlabel('f');
axis([-1 1 -1 1 -1.5 1.5]);
title('采样后的f=cos[2*pi(2x-y)]; mesh')
colormap winter
colorbar

F= fft2(f);%做二维DFT变换,把连续函数取样得到一个矩阵,把这个矩阵当图像一样处理
figure(2)
subplot(121),imshow(abs(F),[]);title('函数f=cos(2*pi(2x-y))采样后的二维频谱')
F=fftshift(F);%使用matlab的fftshift函数把低频分量移到频谱中心
subplot(122),imshow(abs(F),[]);title('中心化频谱')

采样后信号:
在这里插入图片描述
采样后信号频谱:
函数的x方向频率是2,y方向频率是1,所以一定会有混叠失真
可以看出频谱的能量中心的相对位置都不对,这就是混叠失真引起的

在这里插入图片描述

t=-1.1:.17:1.1;%以更高频率采样
[x,y]=meshgrid(t);%形成格点矩阵
f=cos(2*pi*(2*x-y));
figure(1)
mesh(x,y,f);grid on
xlabel('x');
ylabel('y');
zlabel('f');
axis([-1 1 -1 1 -1.5 1.5]);
title('采样后的f=cos[2*pi(2x-y)]; mesh')
colormap winter
colorbar

F= fft2(f);%做二维DFT变换,把连续函数取样得到一个矩阵,把这个矩阵当图像一样处理
figure(2)
subplot(121),imshow(abs(F),[]);title('函数f=cos(2*pi(2x-y))采样后的二维频谱')
F=fftshift(F);%使用matlab的fftshift函数把低频分量移到频谱中心
subplot(122),imshow(abs(F),[]);title('中心化频谱')

以更大的采样频率采样,避免不满足奈奎斯特定理产生混叠:
可见得到的频谱和连续函数的频谱更相似。采样频率越大,得到的频谱和连续函数的频谱越相似
在这里插入图片描述

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请联系我们举报,一经查实,本站将立刻删除。

发布者:全栈程序员-站长,转载请注明出处:https://javaforall.net/183032.html原文链接:https://javaforall.net

(0)
全栈程序员-站长的头像全栈程序员-站长


相关推荐

  • Iterative Shrinkage Thresholding Algorithm

    Iterative Shrinkage Thresholding AlgorithmIterativeShrinkageThresholdingAlgorithm(ISTA)

    2022年6月11日
    42
  • Excel2JSON Excel转JSON Excel另存为JSON的技巧

    Excel2JSON Excel转JSON Excel另存为JSON的技巧不过欢迎大家转发到微博、微信、朋友圈~么么哒~JSON是码农们常用的数据格式,轻且方便,而直接手敲JSON却是比较麻烦和令人心情崩溃的(因为重复的东西很多),所以很多码农可能会和我一样,选择用Excel去输入数据,然后再想办法转换成JSON格式。小编今天推荐使用Excel直接另存为JSON的方法。该方法的特点是:除可以正常的直接按照表头作为key,内容作为value输出之外,还可以

    2022年6月14日
    46
  • 5G网络注册中的切片选择「建议收藏」

    5G网络注册中的切片选择「建议收藏」UE->gNB开机以后,UE会发送RequestedNSSAI注册申请,会带有请求的切片ID,即这次的注册我想请求哪些切片ID,发送给基站,gNB->InitialAMF基站RequestedNSSAI注册申请,基站会根据之前的(),去选择一个AMF,初始AMFInitaialAMF可以看到手机带上来的切片ID到底是什么(例如1号),3.InitialAMF<–>UDM同时InitaialAMF会拿手机UE的IMSI信息,在5G里面是SUPI

    2022年10月2日
    6
  • 干货请收好:终于有人把用户画像的流程、方法讲明白了「建议收藏」

    干货请收好:终于有人把用户画像的流程、方法讲明白了「建议收藏」导读:用户画像将产品设计的焦点放在目标用户的动机和行为上,从而避免产品设计人员草率地代表用户。产品设计人员经常不自觉的把自己当作用户代表,根据自己的需求设计产品,导致无法…

    2022年6月1日
    61
  • ESP8266简介:三种编程方式「建议收藏」

    ESP8266简介:三种编程方式「建议收藏」随着互联网的日益发展,智能家居的观念也逐渐深入人心。想要玩转智能家居,就离不开互联网,今天给大家介绍一款模块——ESP8266。小编将手把手教大家利用8266实现家电的控制。ESP8266可以用来做串口透传,PWM调控,远程控制开关:控制插座、开关、电器等。该模块有三种工作模式,大家可以根据自己的具体情况来选择:STA模式:ESP8266模块通过路由器连接互联网,手机或电脑通过互联网…

    2022年6月10日
    440
  • html 竖排导航条,html 导航栏

    html 竖排导航条,html 导航栏html>lvnian学习(http://lvnian.blog.51cto.com/)ul{list-style-type:none;margin:0;padding:0;}a:link,a:visited{display:block;font-weight:bold;color:#FFFFFF;background-color:#98bf21;width:120px;text-align…

    2022年5月28日
    48

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

关注全栈程序员社区公众号