用matlab绘制三维图_家系图绘制的基本规则

用matlab绘制三维图_家系图绘制的基本规则情形一:函数有显式表达式z=f(x,y)z=f(x,y)z=f(x,y)例1:圆锥面:z=x2+y2z=\sqrt{x^2+y^2}z=x2+y2​clc,clear,closeallx=-5:0.1:5;[X,Y]=meshgrid(x);Z=sqrt(X.^2+Y.^2);mesh(X,Y,Z)例2:旋转抛物面z=2−x2−y2z=2-x^2-y^2z=2−x2−y2clc,clear,closeallx=-5:0.1:5;[X,Y]=meshgrid(x);Z=2-X

大家好,又见面了,我是你们的朋友全栈君。如果您正在找激活码,请点击查看最新教程,关注关注公众号 “全栈程序员社区” 获取激活教程,可能之前旧版本教程已经失效.最新Idea2022.1教程亲测有效,一键激活。

Jetbrains全系列IDE稳定放心使用

情形一:函数有显式表达式 z = f ( x , y ) z=f(x,y) z=f(x,y)
主要使用函数:meshgrid,mesh,fmesh

例1:圆锥面: z = x 2 + y 2 z=\sqrt{x^2+y^2} z=x2+y2

clc,clear,close all
x=-5:0.1:5;
[X,Y]=meshgrid(x);
Z=sqrt(X.^2+Y.^2);
mesh(X,Y,Z)

在这里插入图片描述

例2:旋转抛物面 z = 2 − x 2 − y 2 z=2-x^2-y^2 z=2x2y2

clc,clear,close all
x=-5:0.1:5;
[X,Y]=meshgrid(x);
Z=2-X.^2-Y.^2;
mesh(X,Y,Z)

在这里插入图片描述

例3:抛物柱面 z = 1 − x 2 z=1-x^2 z=1x2

clc,clear,close all
x=-5:0.1:5;
[X,Y]=meshgrid(x);
Z=1-X.^2;
mesh(X,Y,Z)

在这里插入图片描述
例3:平面 z = 1 z=1 z=1

clc,clear,close all
x=-5:0.1:5;
[X,Y]=meshgrid(x);
Z=zeros(size(X))+1;
mesh(X,Y,Z)

在这里插入图片描述

此外,还可利用 fmesh 函数

例1: z = e y sin ⁡ x − e x cos ⁡ y + e x + e y z=e^y\sin x-e^x\cos y+e^x+e^y z=eysinxexcosy+ex+ey

clc,clear,close all
syms x y
f=sin(x)*exp(y)-cos(y)*exp(x)+exp(x)+exp(y);
fmesh(f)

在这里插入图片描述

情形二:

情形三:函数表达式不含有 z z z
主要使用函数:meshgrid,isosurface

例1:抛物柱面 x = 2 y 2 x=2y^2 x=2y2

clc,clear,close all

x=-5:0.1:5;
y=-5:0.1:5;
z=[-5,5];

[X,Y,Z] = meshgrid(x,y,z);
v = 2*Y.^2-X;
isosurface(X,Y,Z,v,0)
grid on

在这里插入图片描述
例2:平面 y = 0 y=0 y=0

clc,clear,close all
x=-5:0.1:5;
y=-5:0.1:5;	
z=[-5,5];	
[X,Y,Z] = meshgrid(x,y,z);
v = Y;	
isosurface(X,Y,Z,v,0)

在这里插入图片描述

例3:平面 x + y = 0 x+y=0 x+y=0

clc,clear,close all
x=-5:0.1:5;
y=-5:0.1:5;
z=[-5,5];
[X,Y,Z] = meshgrid(x,y,z);
v = X+Y-1;
isosurface(X,Y,Z,v,0)

在这里插入图片描述
情形3:函数有参数表达式
主要使用函数 fplot3

例1:
x = sin ⁡ ( t ) y = cos ⁡ ( t ) z = t \begin{aligned} x&=\sin(t)\\ y&=\cos(t)\\ z&=t \end{aligned} xyz=sin(t)=cos(t)=t

clc,clear,close all
xt = @(t) sin(t);
yt = @(t) cos(t);
zt = @(t) t;
fplot3(xt,yt,zt)

在这里插入图片描述
例2:
x = e − t / 10 sin ⁡ ( 5 t ) y = e − t / 10 cos ⁡ ( 5 t ) z = t \begin{aligned} x&=e^{-t / 10} \sin (5 t) \\ y&=e^{-t / 10} \cos (5 t) \\ z&=t \end{aligned} xyz=et/10sin(5t)=et/10cos(5t)=t

clc,clear,close all
xt = @(t) exp(-t/10).*sin(5*t);
yt = @(t) exp(-t/10).*cos(5*t);
zt = @(t) t;
fplot3(xt,yt,zt,[-10 10])

在这里插入图片描述

特殊情形1:取定 x , y x,y x,y 后, z z z 的值不唯一

这种情况往往需要分别求出每一个z,然后多次利用 mesh 函数绘图,比较复杂。(也可能有别的方法,但我不是很懂)

例1: x 2 + y 2 + z 2 = 1 x^2+y^2+z^2=1 x2+y2+z2=1 (此例也可利用参数方程来绘图,此处使用mesh函数仅做示例用,效果并不如fplot3函数好用)

clc,clear,close all
x=-1:0.01:1;
[X,Y]=meshgrid(x);
Z=1-X.^2-Y.^2;
Z(Z<0)=nan; %这一步是为了后面对Z取根号的时候不会得到虚数
Z1=sqrt(Z);
Z2=-sqrt(Z);
mesh(X,Y,Z1)
hold on
mesh(X,Y,Z2)

在这里插入图片描述

一个比较复杂的例子

1 ⩽ x 2 ⩽ y < 4 1\leqslant x^2\leqslant y <4 1x2y<4
z 2 ⩽ x 2 + y 2 z^2\leqslant x^2+y^2 z2x2+y2

clc,clear,close all

x = -2:0.01:2;
y = 1:0.01:4;

[X,Y]=meshgrid(x,y);
index1 = X.^2-Y>0;
X(index1) = nan;
Y(index1) = nan;
index2 = X.^2<1;
X(index2) = nan;
Y(index2) = nan;
Z1 = sqrt(X.^2+Y.^2);
mesh(X,Y,Z1)
hold on 
Z2 = -sqrt(X.^2+Y.^2);
mesh(X,Y,Z2)


hold on
x = -2:0.01:-1;
z = linspace(-5,5,length(x));
[X,Z] = meshgrid(x,z);
Y = ones(length(x))*4;
index = Z.^2-X.^2-Y.^2>0;
X(index) = nan;
Y(index) = nan;
Z(index) = nan;
mesh(X,Y,Z)

x = 1:0.01:2;
z = linspace(-5,5,length(x));
[X,Z] = meshgrid(x,z);
Y = ones(length(x))*4;
index = Z.^2-X.^2-Y.^2>0;
X(index) = nan;
Y(index) = nan;
Z(index) = nan;
mesh(X,Y,Z)



y = 1:0.01:4;
z = linspace(-5,5,length(y));
[Y,Z] = meshgrid(y,z);
X = ones(length(y))*(-1);
index = Z.^2-X.^2-Y.^2>0;
X(index) = nan;
Y(index) = nan;
Z(index) = nan;
mesh(X,Y,Z)

y = 1:0.01:4;
z = linspace(-5,5,length(y));
[Y,Z] = meshgrid(y,z);
X = ones(length(y))*(1);
index = Z.^2-X.^2-Y.^2>0;
X(index) = nan;
Y(index) = nan;
Z(index) = nan;
mesh(X,Y,Z)



x = -2:0.01:-1;
z = linspace(-5,5,length(x));
[X,Z] = meshgrid(x,z);
Y = X.^2;
index = Z.^2-X.^2-Y.^2>0;
X(index) = nan;
Y(index) = nan;
Z(index) = nan;
mesh(X,Y,Z)

x = 1:0.01:2;
z = linspace(-5,5,length(x));
[X,Z] = meshgrid(x,z);
Y = X.^2;
index = Z.^2-X.^2-Y.^2>0;
X(index) = nan;
Y(index) = nan;
Z(index) = nan;
mesh(X,Y,Z)

在这里插入图片描述


2022年5月16日18:23:26

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请联系我们举报,一经查实,本站将立刻删除。

发布者:全栈程序员-站长,转载请注明出处:https://javaforall.net/183096.html原文链接:https://javaforall.net

(0)
全栈程序员-站长的头像全栈程序员-站长


相关推荐

  • spring注解总结_spring元注解

    spring注解总结_spring元注解Java知识学堂:https://gitee.com/zhangbw666/it-knowledge传统的Spring做法是使用.xml文件来对bean进行注入或者是配置aop、事务,这么…

    2025年6月6日
    0
  • java中Scanner的简单用法

    java中Scanner的简单用法一.用法1.先导入Java.util.Scanner包importjava.util.Scanner;2.创建Scanner类的对象Scannersc=newScanner(System.in);//创建对象sc//3.创建一个变量来接收数据inta=sc.nextInt();doubleb=sc.nextDouble();floatc=sc.nextFloat();二.使用…

    2022年7月20日
    13
  • springboot框架 目录结构

    springboot框架 目录结构目录结构src/main/java:主程序入口Application,可以通过直接运行该类来启动SpringBoot应用src/main/resources:配置目录,该目录用来存放应用的一些配置信息,比如应用名、服务端口、数据库配置等。由于我们应用了Web模块,因此产生了static目录与templates目录,前者用于存放静态资源,如图片、CSS、JavaScript等;后…

    2022年8月20日
    6
  • quartz定时任务使用(quartz定时任务原理)

    packagecom.jeeplus.common.utils;importjava.util.Map;importorg.quartz.CronScheduleBuilder;importorg.quartz.CronTrigger;importorg.quartz.Job;importorg.quartz.JobBuilder;importorg.quartz….

    2022年4月17日
    86
  • 拉链表实现及使用

    拉链表实现及使用一、概念历史拉链表,就是记录一个事务从开始一直到当前状态的所有变化的信息,拉链表可以避免按每一天存储所有记录造成的海量存储问题,同时也是处理缓慢变化数据的一种常见方式。假设企业拥有1000万的会员信息,每天有20万的会员资料变更,我们需要记录所有会议的历史变化记录,并至少保留两年,该怎么办?储存两年就是2x365x1000万=7300000000(70亿),如果储存…

    2022年10月16日
    0
  • linux同时启动两个Tomcat[通俗易懂]

    linux同时启动两个Tomcat[通俗易懂]编辑环境变量:vim/etc/profile 在文件末尾复制粘贴即可##########firsttomcat###########CATALINA_BASE=/opt/tomcatCATALINA_HOME=/opt/tomcatTOMCAT_HOME=/opt/tomcatexportCATALINA_BASECATALINA_HOMETOMCAT_HO

    2022年6月16日
    56

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

关注全栈程序员社区公众号