python简单代码_gdal python

python简单代码_gdal python目标:实现GBDT+LR模型代码,并比较和各种RF/XGBoost+LR模型的效果,发现GBDT+LR真心好用啊。内容:构造GBDT+LR步骤训练阶段:1、获取特性信息2、训练GBDT分类器3、遍历GBDT树的叶子节点,拼接成一个常常的一维向量4、训练OneHot编码器5、训练LR模型预测阶段:1、把带预测的特征输入到GBDT2、获得叶子节点,拼接成一个常常的一维向量3、获得OneHot向量4、LR预测结果这里发现了上篇文章的一个错误:就是GBDT树的叶子节点,输

大家好,又见面了,我是你们的朋友全栈君。如果您正在找激活码,请点击查看最新教程,关注关注公众号 “全栈程序员社区” 获取激活教程,可能之前旧版本教程已经失效.最新Idea2022.1教程亲测有效,一键激活。

Jetbrains全系列IDE稳定放心使用

目标:GBDT+LR模型

实现GBDT+LR模型代码,并比较和各种RF/XGBoost + LR模型的效果(下篇),发现GBDT+LR真心好用啊。

继续修复bug:GBDT和LR模型需要分开用不同的数据训练,当数据量多的时候,就能体现出差别,分开训练时防止过拟合,能提升模型的泛化性能。


步骤:GBDT+OneHot+LR

构造GBDT+LR步骤
训练阶段:
1、 获取特性数据,拆分成3组,一组测试数据,一组GBDT训练数据,一组LR训练数据
2、训练GBDT分类器
3、遍历GBDT树的叶子节点,拼接成一个长长的一维向量
4、 训练OneHot编码器
5、 训练LR模型
预测阶段:
1、把带预测的特征输入到GBDT
2、获得叶子节点,拼接成一个常常的一维向量
3、获得OneHot向量
4、LR预测结果

这里发现了上篇文章的一个错误:
就是GBDT树的叶子节点,输出的不是0/1的预测值,也不是0/1的概率,而是一些实数值,值还比较大,因此,叶子节点的值,拼接出来的向量,是个长长的非稀疏矩阵。
结果表明,GBDT+LR效果好过单纯的GBDT。
GBDT模型不能太深,太深效果反而不好,可能跟GBDT容易过拟合有关系。


测试数据:iris

数据采用sklearn里面自带的iris花分类数据。为了模拟CTR的二分类效果,做了一下特殊处理:

1、 iris花是个3分类的数据,因此把分类为2的数据,统一归为0,这样就模拟了0/1的二分类
2、分类数据比0/1=2:1

提醒:貌似GBDT模型不能太深,太深效果反而不好,可能跟GBDT容易过拟合有关系。


代码:

from sklearn.datasets import load_iris
import numpy as np
import pandas as pd
from sklearn.ensemble import GradientBoostingClassifier

np.random.seed(10)

# 加载测试数据
iris_data,iris_target = load_iris(return_X_y=True,as_frame=True)
iris_data.columns =['SepalLengthCm','SepalWidthCm','PetalLengthCm','PetalWidthCm']
print(iris_data.head(5))
print(iris_data.columns)
print(iris_target)
iris_target = pd.DataFrame(iris_target,dtype='float32')  #替换类型
print(iris_target.dtypes)
iris_target[iris_target['target']==2]=0  #把类别为2的归为0,这样模拟CTR的0/1标记。

iris=iris_data.merge(iris_target,left_index=True,right_index=True)  #拼接成一个大的Dataframe,便于拆分测试数据
print(iris.head(5))
from sklearn.model_selection import train_test_split

# 拆分测试数据和验证数据
iris_train ,iris_test = train_test_split(iris,test_size=0.8,random_state=203)
print(iris_train.head(5))

#拆分特征和标签为测试集和训练集
Y_train = np.array(iris_train['target'])
X_train = iris_train.drop(columns=['target'])

#训练集进一步拆分为GBDT训练集和LR训练集,两者分开,能防止过拟合,提升模型的泛化性能。
X_train_GBDT ,X_train_LR,Y_train_GBDT,Y_train_LR = train_test_split(X_train,Y_train,test_size=0.5,random_state=203)

print(X_train_GBDT.head(5))

Y_test = np.array(iris_test['target'])
X_test = iris_test.drop(columns=['target'])
print(X_test.head(5))

#训练GBDT模型
from sklearn.ensemble import GradientBoostingClassifier
GBDT = GradientBoostingClassifier(n_estimators=5)
GBDT.fit(X_train_GBDT,Y_train_GBDT)

#GBDT直接预测
GBDTPredict= GBDT.predict(X_test)

#获取GBDT叶子节点的输出,展开成1维
GBDTy=GBDT.apply(X_train_GBDT)[:,:,0]

#训练OneHot编码
from sklearn.preprocessing import OneHotEncoder
OneHot = OneHotEncoder()
OneHoty=OneHot.fit_transform(GBDTy)

# 导入线性模型LR
from sklearn.linear_model import LinearRegression

OneHot.transform(GBDT.apply(X_train_LR)[:,:,0])
LR = LinearRegression()
LR.fit(OneHot.transform(GBDT.apply(X_train_LR)[:,:,0]),Y_train_LR)

#test GBDT输出预测的概率值
GBDT.predict_proba(X_test)[:,1]

# 把测试数据输入到训练好的GBDT模型,然后得到叶子节点的值
GBDTtesty=GBDT.apply(X_test)[:,:,0]
print(GBDTtesty)
# 得到OneHot编码
OneHotTesty = OneHot.transform(GBDTtesty)
#LR模型预测
LRy= LR.predict(OneHotTesty)
print(LRy)

#导入评估模块,使用AUC 评估模型
from sklearn.metrics import roc_curve,roc_auc_score
# 测试GBDT+LR的预测效果
pr,fr,_=roc_curve(Y_test,LRy)
print(Y_test)
print('roc_auc_score of GDBT+LR is ',roc_auc_score(Y_test,LRy))

from matplotlib import pyplot
pyplot.plot(pr,fr)
pyplot.xlabel("pr")
pyplot.ylabel('fr')
pyplot.show()

# 测试GBDT预测的概率值和真值的差距
print('roc_auc_score of GDBT predict_proba is ',roc_auc_score(Y_test,GBDT.predict_proba(X_test)[:,1]))
# 测试GBDT预测值和真值的差距
print('roc_auc_score of GDBT predict is ',roc_auc_score(Y_test,GBDT.predict(X_test)))

结果比较:与直接GBDT模型的比较

roc_auc_score of GDBT+LR is  0.8348255634455078

在这里插入图片描述

直接用GBDT预测的结果:

roc_auc_score of GDBT predict_proba is  0.8260265514047544
roc_auc_score of GDBT predict is  0.8260265514047544

可以看到,GBDT+LR模型的效果,好于GBDT。

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请联系我们举报,一经查实,本站将立刻删除。

发布者:全栈程序员-站长,转载请注明出处:https://javaforall.net/183636.html原文链接:https://javaforall.net

(0)
全栈程序员-站长的头像全栈程序员-站长


相关推荐

  • source insight3.5激活码_sourceinsight激活成功教程版安装教程

    source insight3.5激活码_sourceinsight激活成功教程版安装教程注册码是SI3US-361500-17409

    2022年10月3日
    4
  • SVD分解 Eigen库 opencv库[通俗易懂]

    SVD分解 Eigen库 opencv库[通俗易懂]如题,使用库函数进行svd分解,形如A=U*S*VT.Eigen库:#include#include#include//usingEigen::MatrixXf;usingnamespaceEigen;usingnamespaceEigen::internal;usingnamespaceEigen::Architect

    2022年10月19日
    3
  • 富集分析集锦(KEGG富集分析图)

    链接:https://www.jianshu.com/p/988d90484f77不管是转录组,还是芯片数据,或者其他有关基因的组学分析,每当数据分析到后面,要想得到结果,都躲不过这个富集分析,因为它是帮助我们从庞杂的组学数据中发掘规律重要的一环,对基因功能进行富集分析,就有可能发现在生物学过程中起关键作用的生物通路,并且帮助理解生物学过程的分子机制。现在的高通量测序带来的巨大数据量,让我们眼…

    2022年4月15日
    564
  • leetcode最长回文子串_kmp算法题

    leetcode最长回文子串_kmp算法题实现 strStr() 函数。给定一个 haystack 字符串和一个 needle 字符串,在 haystack 字符串中找出 needle 字符串出现的第一个位置 (从0开始)。如果不存在,则返回 -1。示例 1:输入: haystack = “hello”, needle = “ll”输出: 2示例 2:输入: haystack = “aaaaa”, needle = “bba”输出: -1说明:当 needle 是空字符串时,我们应当返回什么值呢?这是一个在面试中很好的问题

    2022年8月9日
    5
  • 数据结构(一)线性存储结构[通俗易懂]

    线性结构作为最常用的数据结构,其特点是数据元素之间存在一对一的线性关系。线性结构拥有两种不同的存储结构,即顺序存储结构和链式存储结构。顺序存储的线性表称为顺序表,顺序表中的存储元素是连续的,链式存储的线性表称为链表,链表中的存储元素不一定是连续的,元素节点中存放数据元素以及相邻元素的地址信息。线性结构中存在两种操作受限的使用场景,即队列和栈。栈的操作只能在线性表的一端进行,…

    2022年4月15日
    59
  • [数据库] 一文搞懂case when所有使用场景「建议收藏」

    [数据库] 一文搞懂case when所有使用场景「建议收藏」前几天,为了给产品分析当前用户数据结构,写sql的时候使用到了casewhen,今天来总结一下casewhen的使用方法,以此为戒,感觉写的不好请拍砖,感觉写的还可以,给哥们点个赞,或者回复一下,让我意识到我不是一个人在战斗,好了废话不多说了,进入正题。关于casewhen的使用情况,我总结下来有三种,第一、等值转换,第二、范围转换,第三、列转行操作。等值转换咱们在设计数据库的…

    2025年9月17日
    6

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

关注全栈程序员社区公众号