从ResNet101到ResNet50

从ResNet101到ResNet50一直用VGG训练,几天前想看下ResNet的效果如何,因为SSD源码中有python实现的ResNet网络结构实现代码,包含ResNet101和ResNet152,直接拿ResNet101来训练,GTX1060配置,batchsize竟然只降到2才跑的起来,果然一直收敛不了。看了下model_libs.py里面的实现代码:defResNet101Body(net,from_layer,u

大家好,又见面了,我是你们的朋友全栈君。如果您正在找激活码,请点击查看最新教程,关注关注公众号 “全栈程序员社区” 获取激活教程,可能之前旧版本教程已经失效.最新Idea2022.1教程亲测有效,一键激活。

Jetbrains全系列IDE稳定放心使用

一直用VGG训练,几天前想看下ResNet的效果如何,因为SSD源码中有python实现的ResNet网络结构实现代码,包含ResNet101和ResNet152,直接拿ResNet101来训练,GTX1060配置,batchsize竟然只降到2才跑的起来,果然一直收敛不了。看了下model_libs.py里面的实现代码:

def ResNet101Body(net, from_layer, use_pool5=True, use_dilation_conv5=False, **bn_param):
    conv_prefix = ''
    conv_postfix = ''
    bn_prefix = 'bn_'
    bn_postfix = ''
    scale_prefix = 'scale_'
    scale_postfix = ''
    ConvBNLayer(net, from_layer, 'conv1', use_bn=True, use_relu=True,
        num_output=64, kernel_size=7, pad=3, stride=2,
        conv_prefix=conv_prefix, conv_postfix=conv_postfix,
        bn_prefix=bn_prefix, bn_postfix=bn_postfix,
        scale_prefix=scale_prefix, scale_postfix=scale_postfix, **bn_param)

    net.pool1 = L.Pooling(net.conv1, pool=P.Pooling.MAX, kernel_size=3, stride=2)

    ResBody(net, 'pool1', '2a', out2a=64, out2b=64, out2c=256, stride=1, use_branch1=True, **bn_param)
    ResBody(net, 'res2a', '2b', out2a=64, out2b=64, out2c=256, stride=1, use_branch1=False, **bn_param)
    ResBody(net, 'res2b', '2c', out2a=64, out2b=64, out2c=256, stride=1, use_branch1=False, **bn_param)

    ResBody(net, 'res2c', '3a', out2a=128, out2b=128, out2c=512, stride=2, use_branch1=True, **bn_param)

    from_layer = 'res3a'
    for i in xrange(1, 4):
      block_name = '3b{}'.format(i)
      ResBody(net, from_layer, block_name, out2a=128, out2b=128, out2c=512, stride=1, use_branch1=False, **bn_param)
      from_layer = 'res{}'.format(block_name)

    ResBody(net, from_layer, '4a', out2a=256, out2b=256, out2c=1024, stride=2, use_branch1=True, **bn_param)

    from_layer = 'res4a'
    for i in xrange(1, 23):
      block_name = '4b{}'.format(i)
      ResBody(net, from_layer, block_name, out2a=256, out2b=256, out2c=1024, stride=1, use_branch1=False, **bn_param)
      from_layer = 'res{}'.format(block_name)

    stride = 2
    dilation = 1
    if use_dilation_conv5:
      stride = 1
      dilation = 2

    ResBody(net, from_layer, '5a', out2a=512, out2b=512, out2c=2048, stride=stride, use_branch1=True, dilation=dilation, **bn_param)
    ResBody(net, 'res5a', '5b', out2a=512, out2b=512, out2c=2048, stride=1, use_branch1=False, dilation=dilation, **bn_param)
    ResBody(net, 'res5b', '5c', out2a=512, out2b=512, out2c=2048, stride=1, use_branch1=False, dilation=dilation, **bn_param)

    if use_pool5:
      net.pool5 = L.Pooling(net.res5c, pool=P.Pooling.AVE, global_pooling=True)

    return net

RenNet152Body为:

def ResNet152Body(net, from_layer, use_pool5=True, use_dilation_conv5=False, **bn_param):
    conv_prefix = ''
    conv_postfix = ''
    bn_prefix = 'bn_'
    bn_postfix = ''
    scale_prefix = 'scale_'
    scale_postfix = ''
    ConvBNLayer(net, from_layer, 'conv1', use_bn=True, use_relu=True,
        num_output=64, kernel_size=7, pad=3, stride=2,
        conv_prefix=conv_prefix, conv_postfix=conv_postfix,
        bn_prefix=bn_prefix, bn_postfix=bn_postfix,
        scale_prefix=scale_prefix, scale_postfix=scale_postfix, **bn_param)

    net.pool1 = L.Pooling(net.conv1, pool=P.Pooling.MAX, kernel_size=3, stride=2)

    ResBody(net, 'pool1', '2a', out2a=64, out2b=64, out2c=256, stride=1, use_branch1=True, **bn_param)
    ResBody(net, 'res2a', '2b', out2a=64, out2b=64, out2c=256, stride=1, use_branch1=False, **bn_param)
    ResBody(net, 'res2b', '2c', out2a=64, out2b=64, out2c=256, stride=1, use_branch1=False, **bn_param)

    ResBody(net, 'res2c', '3a', out2a=128, out2b=128, out2c=512, stride=2, use_branch1=True, **bn_param)

    from_layer = 'res3a'
    for i in xrange(1, 8):
      block_name = '3b{}'.format(i)
      ResBody(net, from_layer, block_name, out2a=128, out2b=128, out2c=512, stride=1, use_branch1=False, **bn_param)
      from_layer = 'res{}'.format(block_name)

    ResBody(net, from_layer, '4a', out2a=256, out2b=256, out2c=1024, stride=2, use_branch1=True, **bn_param)

    from_layer = 'res4a'
    for i in xrange(1, 36):
      block_name = '4b{}'.format(i)
      ResBody(net, from_layer, block_name, out2a=256, out2b=256, out2c=1024, stride=1, use_branch1=False, **bn_param)
      from_layer = 'res{}'.format(block_name)

    stride = 2
    dilation = 1
    if use_dilation_conv5:
      stride = 1
      dilation = 2

    ResBody(net, from_layer, '5a', out2a=512, out2b=512, out2c=2048, stride=stride, use_branch1=True, dilation=dilation, **bn_param)
    ResBody(net, 'res5a', '5b', out2a=512, out2b=512, out2c=2048, stride=1, use_branch1=False, dilation=dilation, **bn_param)
    ResBody(net, 'res5b', '5c', out2a=512, out2b=512, out2c=2048, stride=1, use_branch1=False, dilation=dilation, **bn_param)

    if use_pool5:
      net.pool5 = L.Pooling(net.res5c, pool=P.Pooling.AVE, global_pooling=True)

    return net

其中每次调用ResBody,当use_brabch1 = True,会创建4个卷积层,当use_brabch1 = False时,创建3个卷积层。ResNet101Body和ResNet152Body的区别在于两个for循环的次数不一样,101层和152层差的51层就是这里体现的,所以现在要创建ResNet50Body就容易多了。根据网上下载的模型对应的ResNet_50_train_val.prototxt,对上面代码进行修改即可。50层,batchsize=4,训练马上收敛。当然训练方式多种,可用直接利用已有ResNet_50_train_val.prototxt进行训练。

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请联系我们举报,一经查实,本站将立刻删除。

发布者:全栈程序员-站长,转载请注明出处:https://javaforall.net/184909.html原文链接:https://javaforall.net

(0)
全栈程序员-站长的头像全栈程序员-站长


相关推荐

  • 详解机器学习中的数据处理(一)——缺失值处理(附完整代码)

    详解机器学习中的数据处理(一)——缺失值处理(附完整代码)摘要 在机器学习中 我们的数据集往往存在各种各样的问题 如果不对数据进行预处理 模型的训练和预测就难以进行 这一系列博文将介绍一下机器学习中的数据预处理问题 以 UCI 数据集为例详细介绍缺失值处理 连续特征离散化 特征归一化及离散特征的编码等问题 同时会附上处理的 Matlab 程序代码 这篇博文先介绍缺失值的处理 要点如下 处理缺失值的方法 读取数据集文件 查找 替换缺失数据

    2025年11月21日
    3
  • Linux开机启动nginx「建议收藏」

    Linux开机启动nginx「建议收藏」在/etc/init.d下创建文件nginxvim/etc/init.d/nginxnginx官方脚本修改配置nginx=”/usr/local/nginx/sbin/nginx”#修改成nginx执行程序的路径NGINX_CONF_FILE=”/usr/local/nginx/conf/nginx.conf”#修改成nginx.conf文件的路径设置文件的执行权限chmoda+x/etc/init.d/nginx可以通过下面指令控制启动停止/etc/init..

    2022年10月6日
    3
  • Mac 卸载cuda

    Mac 卸载cudaMac卸载cudasudoperl/usr/local/bin/uninstall_cuda_drv.pl检查是否卸载成功:gcc-v

    2022年6月21日
    56
  • 【PLSQL】package包的使用

    【PLSQL】package包的使用

    2021年12月16日
    48
  • 最近公共祖先_洛谷好不好

    最近公共祖先_洛谷好不好原题链接题目描述如题,给定一棵有根多叉树,请求出指定两个点直接最近的公共祖先。输入格式第一行包含三个正整数 N,M,SN,M,S,分别表示树的结点个数、询问的个数和树根结点的序号。接下来 N-1N−1 行每行包含两个正整数 x, yx,y,表示 xx 结点和 yy 结点之间有一条直接连接的边(数据保证可以构成树)。接下来 MM 行每行包含两个正整数 a, ba,b,表示询问 aa 结点和 bb 结点的最近公共祖先。输出格式输出包含 MM 行,每行包含一个正整数,依次为每一个询问的结果。输入

    2022年8月8日
    7
  • win server服务器 关闭危险端口 135,137,138,139,445的方法

    win server服务器 关闭危险端口 135,137,138,139,445的方法转至:https://www.cnblogs.com/su-root/p/10988875.htmlWindows默认开放135、137、138、139和445五个端口,都与文件共享和打印机共享有关

    2022年7月2日
    28

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

关注全栈程序员社区公众号