从ResNet101到ResNet50

从ResNet101到ResNet50一直用VGG训练,几天前想看下ResNet的效果如何,因为SSD源码中有python实现的ResNet网络结构实现代码,包含ResNet101和ResNet152,直接拿ResNet101来训练,GTX1060配置,batchsize竟然只降到2才跑的起来,果然一直收敛不了。看了下model_libs.py里面的实现代码:defResNet101Body(net,from_layer,u

大家好,又见面了,我是你们的朋友全栈君。如果您正在找激活码,请点击查看最新教程,关注关注公众号 “全栈程序员社区” 获取激活教程,可能之前旧版本教程已经失效.最新Idea2022.1教程亲测有效,一键激活。

Jetbrains全系列IDE稳定放心使用

一直用VGG训练,几天前想看下ResNet的效果如何,因为SSD源码中有python实现的ResNet网络结构实现代码,包含ResNet101和ResNet152,直接拿ResNet101来训练,GTX1060配置,batchsize竟然只降到2才跑的起来,果然一直收敛不了。看了下model_libs.py里面的实现代码:

def ResNet101Body(net, from_layer, use_pool5=True, use_dilation_conv5=False, **bn_param):
    conv_prefix = ''
    conv_postfix = ''
    bn_prefix = 'bn_'
    bn_postfix = ''
    scale_prefix = 'scale_'
    scale_postfix = ''
    ConvBNLayer(net, from_layer, 'conv1', use_bn=True, use_relu=True,
        num_output=64, kernel_size=7, pad=3, stride=2,
        conv_prefix=conv_prefix, conv_postfix=conv_postfix,
        bn_prefix=bn_prefix, bn_postfix=bn_postfix,
        scale_prefix=scale_prefix, scale_postfix=scale_postfix, **bn_param)

    net.pool1 = L.Pooling(net.conv1, pool=P.Pooling.MAX, kernel_size=3, stride=2)

    ResBody(net, 'pool1', '2a', out2a=64, out2b=64, out2c=256, stride=1, use_branch1=True, **bn_param)
    ResBody(net, 'res2a', '2b', out2a=64, out2b=64, out2c=256, stride=1, use_branch1=False, **bn_param)
    ResBody(net, 'res2b', '2c', out2a=64, out2b=64, out2c=256, stride=1, use_branch1=False, **bn_param)

    ResBody(net, 'res2c', '3a', out2a=128, out2b=128, out2c=512, stride=2, use_branch1=True, **bn_param)

    from_layer = 'res3a'
    for i in xrange(1, 4):
      block_name = '3b{}'.format(i)
      ResBody(net, from_layer, block_name, out2a=128, out2b=128, out2c=512, stride=1, use_branch1=False, **bn_param)
      from_layer = 'res{}'.format(block_name)

    ResBody(net, from_layer, '4a', out2a=256, out2b=256, out2c=1024, stride=2, use_branch1=True, **bn_param)

    from_layer = 'res4a'
    for i in xrange(1, 23):
      block_name = '4b{}'.format(i)
      ResBody(net, from_layer, block_name, out2a=256, out2b=256, out2c=1024, stride=1, use_branch1=False, **bn_param)
      from_layer = 'res{}'.format(block_name)

    stride = 2
    dilation = 1
    if use_dilation_conv5:
      stride = 1
      dilation = 2

    ResBody(net, from_layer, '5a', out2a=512, out2b=512, out2c=2048, stride=stride, use_branch1=True, dilation=dilation, **bn_param)
    ResBody(net, 'res5a', '5b', out2a=512, out2b=512, out2c=2048, stride=1, use_branch1=False, dilation=dilation, **bn_param)
    ResBody(net, 'res5b', '5c', out2a=512, out2b=512, out2c=2048, stride=1, use_branch1=False, dilation=dilation, **bn_param)

    if use_pool5:
      net.pool5 = L.Pooling(net.res5c, pool=P.Pooling.AVE, global_pooling=True)

    return net

RenNet152Body为:

def ResNet152Body(net, from_layer, use_pool5=True, use_dilation_conv5=False, **bn_param):
    conv_prefix = ''
    conv_postfix = ''
    bn_prefix = 'bn_'
    bn_postfix = ''
    scale_prefix = 'scale_'
    scale_postfix = ''
    ConvBNLayer(net, from_layer, 'conv1', use_bn=True, use_relu=True,
        num_output=64, kernel_size=7, pad=3, stride=2,
        conv_prefix=conv_prefix, conv_postfix=conv_postfix,
        bn_prefix=bn_prefix, bn_postfix=bn_postfix,
        scale_prefix=scale_prefix, scale_postfix=scale_postfix, **bn_param)

    net.pool1 = L.Pooling(net.conv1, pool=P.Pooling.MAX, kernel_size=3, stride=2)

    ResBody(net, 'pool1', '2a', out2a=64, out2b=64, out2c=256, stride=1, use_branch1=True, **bn_param)
    ResBody(net, 'res2a', '2b', out2a=64, out2b=64, out2c=256, stride=1, use_branch1=False, **bn_param)
    ResBody(net, 'res2b', '2c', out2a=64, out2b=64, out2c=256, stride=1, use_branch1=False, **bn_param)

    ResBody(net, 'res2c', '3a', out2a=128, out2b=128, out2c=512, stride=2, use_branch1=True, **bn_param)

    from_layer = 'res3a'
    for i in xrange(1, 8):
      block_name = '3b{}'.format(i)
      ResBody(net, from_layer, block_name, out2a=128, out2b=128, out2c=512, stride=1, use_branch1=False, **bn_param)
      from_layer = 'res{}'.format(block_name)

    ResBody(net, from_layer, '4a', out2a=256, out2b=256, out2c=1024, stride=2, use_branch1=True, **bn_param)

    from_layer = 'res4a'
    for i in xrange(1, 36):
      block_name = '4b{}'.format(i)
      ResBody(net, from_layer, block_name, out2a=256, out2b=256, out2c=1024, stride=1, use_branch1=False, **bn_param)
      from_layer = 'res{}'.format(block_name)

    stride = 2
    dilation = 1
    if use_dilation_conv5:
      stride = 1
      dilation = 2

    ResBody(net, from_layer, '5a', out2a=512, out2b=512, out2c=2048, stride=stride, use_branch1=True, dilation=dilation, **bn_param)
    ResBody(net, 'res5a', '5b', out2a=512, out2b=512, out2c=2048, stride=1, use_branch1=False, dilation=dilation, **bn_param)
    ResBody(net, 'res5b', '5c', out2a=512, out2b=512, out2c=2048, stride=1, use_branch1=False, dilation=dilation, **bn_param)

    if use_pool5:
      net.pool5 = L.Pooling(net.res5c, pool=P.Pooling.AVE, global_pooling=True)

    return net

其中每次调用ResBody,当use_brabch1 = True,会创建4个卷积层,当use_brabch1 = False时,创建3个卷积层。ResNet101Body和ResNet152Body的区别在于两个for循环的次数不一样,101层和152层差的51层就是这里体现的,所以现在要创建ResNet50Body就容易多了。根据网上下载的模型对应的ResNet_50_train_val.prototxt,对上面代码进行修改即可。50层,batchsize=4,训练马上收敛。当然训练方式多种,可用直接利用已有ResNet_50_train_val.prototxt进行训练。

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请联系我们举报,一经查实,本站将立刻删除。

发布者:全栈程序员-站长,转载请注明出处:https://javaforall.net/184909.html原文链接:https://javaforall.net

(0)
全栈程序员-站长的头像全栈程序员-站长


相关推荐

  • 大数据数仓建模

    大数据数仓建模        大数据项目之电商数仓(用户行为数据采集)数据仓库简介      1.什么是数据库?    数据库(database)是按照数据结构来组织,存储和管理数据的建立在计算机存储设备上的仓库。    数据库是长期存储在计算机内,有组织的,可共享的数据集合。数据库中的数据指的是以一定的数据模型组织,描述和存储在一起,具有尽可能小的冗余度,较高的数据独立性和易扩展性的特点并可在一定范围内为多个用户共享。    常用的数据库有mysql,oracle,sqlserver等。作用不一样,数据库是

    2022年5月7日
    50
  • Nginx和Apache和Tomcat的区别及优缺点「建议收藏」

    Nginx和Apache和Tomcat的区别及优缺点「建议收藏」Nginx和Apache和Tomcat的区别及优缺点1、定义:1)ApacheApacheHTTP服务器是一个模块化的服务器,可以运行在几乎所有广泛使用的计算机平台上。其属于应用服务器。Apache支持支持模块多,性能稳定,Apache本身是静态解析,适合静态HTML、图片等,但可以通过扩展脚本、模块等支持动态页面等。(Apche可以支持PHPcgiperl,但是要使用Java的话,你需…

    2022年4月26日
    42
  • ACCESS打得开mdb,但打不开表,弹框提示未知错误。

    ACCESS打得开mdb,但打不开表,弹框提示未知错误。

    2021年11月17日
    37
  • python移位运算,python移位运算

    python移位运算,python移位运算title:python移位运算date:2018-10-1219:55:22tags:#标签-PYTHONpython移位运算密码算法程序设计实践选的SHA-1。在写的过程中遇到一丢丢关于python移位的问题,记录一下。SHA-1其中第一步需要填充消息。简单阐述一下sha1填充消息的过程:如输入消息“123”,先转成ascii码——313233,消息长度为3*8=24。即001100…

    2022年7月13日
    15
  • 9b9t服务器显示连接超时,在WebRTC中ICE连接失败

    9b9t服务器显示连接超时,在WebRTC中ICE连接失败我们正在尝试将浏览器(客户端)与aiortc库(服务器,发送单个视频流)连接起来。目前,连接已成功建立(onsignalingstatechange稳定)。但是,媒体连接从未建立,因为ICE连接失败。这两台主机在同一个局域网上,并且已经验证了直接连接。使用的STUN服务器是STUN.l。谷歌:19302.在服务器上的日志如下:DEBUG:asyncio:Usingselector:Epol…

    2022年5月22日
    45
  • 木马编程参考[通俗易懂]

    木马编程参考[通俗易懂]参考链接:木马入门渗透之木马基础篇

    2022年6月16日
    42

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

关注全栈程序员社区公众号