线性代数投影矩阵的定义_线性代数a和线性代数b

线性代数投影矩阵的定义_线性代数a和线性代数bAbout投影矩阵  一个矩阵AAA既可以表示一种线性变换,又可以是一个子空间(由基张开的),还可以是一组坐标,甚是神奇。文章目录About投影矩阵一维空间的投影矩阵投影矩阵的多维推广投影的物理意义信号处理中的正交投影技术一维空间的投影矩阵  查看上图,ppp是bbb在aaa上的投影,可以发现,ppp和aaa是同向的,故可以表示为如下形式,其中xxx是标量p=axp=axp=ax  根据eee和ppp正交的条件,可以推导出x=aTbaTax=\frac{a^Tb}{a^Ta}x=aTaaT

大家好,又见面了,我是你们的朋友全栈君。如果您正在找激活码,请点击查看最新教程,关注关注公众号 “全栈程序员社区” 获取激活教程,可能之前旧版本教程已经失效.最新Idea2022.1教程亲测有效,一键激活。

Jetbrains全系列IDE稳定放心使用

About 投影矩阵

  一个矩阵 A A A既可以表示一种线性变换,又可以是一个子空间(由基张开的),还可以是一组坐标,甚是神奇。

一维空间的投影矩阵

在这里插入图片描述
  查看上图, p p p b b b a a a上的投影,可以发现, p p p a a a是同向的,故可以表示为如下形式,其中 x x x是标量
p = a x p=ax p=ax
  根据 e e e p p p正交的条件,可以推导出 x = a T b a T a x=\frac{a^Tb}{a^Ta} x=aTaaTb,则
p = a a T b a T a = a a T a T a b = P b p=a\frac{a^Tb}{a^Ta}=\frac{aa^T}{a^Ta}b=Pb p=aaTaaTb=aTaaaTb=Pb P = a a T a T a P=\frac{aa^T}{a^Ta} P=aTaaaT
  记 P P P为投影矩阵,说明了向量 b b b a a a上的投影 p p p是一个矩阵作用在 b b b上得到的。
P P P的性质
1. P = P T P=P^T P=PT,对称矩阵一定可以特征值分解
2. r a n k ( P ) = 1 rank(P)=1 rank(P)=1,由单个向量张开的子空间,秩为1
3. P = P 2 P=P^2 P=P2,投影只起一次效果

投影矩阵的多维推广

在这里插入图片描述
  向量 b b b在子空间上的投影是向量 b b b在向量 a a a上投影的推广。即此时向量 a a a变成矩阵 A A A,记 A A A的列空间包含两个向量 a 1 , a 2 a_1,a_2 a1,a2,依旧记向量 b b b A A A空间上的投影为 p p p,则:
p = A x = [ a 1 a 2 ] [ x 1 x 2 ] = a 1 x 1 + a 2 x 2 p=Ax=\begin{bmatrix} a_1&a_2\end{bmatrix}\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}=a_1x_1+a_2x_2 p=Ax=[a1a2][x1x2]=a1x1+a2x2
  误差向量 e e e垂直于列空间的平面,故:
{ a 1 T ( b − p ) = 0 a 2 T ( b − p ) = 0 \left\{ \begin{aligned} a_1^T(b-p)=0 \\ a_2^T(b-p)=0 \end{aligned} \right. {
a1T(bp)=0a2T(bp)=0
A T ( b − p ) = 0 A^T(b-p)=0 AT(bp)=0 A T ( b − A x ) = 0 A^T(b-Ax)=0 AT(bAx)=0 A T b = A T A x A^Tb=A^TAx ATb=ATAx x = ( A T A ) − 1 A T b x=(A^TA)^{-1}A^Tb x=(ATA)1ATb
  此时投影向量 p p p的形式为:
p = A x = A ( A T A ) − 1 A T b = P b p=Ax=A(A^TA)^{-1}A^Tb=Pb p=Ax=A(ATA)1ATb=Pb P = A ( A T A ) − 1 A T P=A(A^TA)^{-1}A^T P=A(ATA)1AT
  这存在一个疑问, A T A A^TA ATA是否可逆?若 A A A各列线性无关则可逆。
P P P的性质
1. P = P T P=P^T P=PT,对称矩阵一定可以特征值分解
2. r a n k ( P ) = r a n k ( A ) rank(P)=rank(A) rank(P)=rank(A),由 A A A张开,故等秩
3. P = P 2 P=P^2 P=P2,投影只起一次效果

投影的物理意义

  向量投影到子空间的物理意义是什么?查看线性方程组 A x = b Ax=b Ax=b
A = [ a 1 a 2 ⋯ a n ] , x = [ x 1 x 2 ⋮ x n ] A=\begin{bmatrix} a_1&a_2&\cdots&a_n\end{bmatrix}, x=\begin{bmatrix} x_1 \\ x_2 \\\vdots\\x_n \end{bmatrix} A=[a1a2an],x=x1x2xn b = a 1 x 1 + a 2 x 2 + ⋯ + a n x n b=a_1x_1+a_2x_2+\cdots+a_nx_n b=a1x1+a2x2++anxn
  上式的物理意义:把 A A A中的列向量看成 A A A的列空间中的基, x x x为坐标,则向量 b b b是否可用 A A A中的基线性表示,若出现以下情况:向量 b b b不在 A A A的列空间中,则上式无解。
  此时,若将 b b b投影至 A A A的子空间,即 p = P b = A ( A T A ) − 1 A T b p=Pb=A(A^TA)^{-1}A^Tb p=Pb=A(ATA)1ATb,求解 A x ^ = p A\hat{x}=p Ax^=p,因为 p p p最接近于 b b b,所以近似解 x ^ \hat{x} x^最接近于 x x x,以上即为最小二乘法的几何解释,数学描述如下:
A x = b Ax=b Ax=b A x ^ = A ( A T A ) − 1 A T b A\hat{x}=A(A^TA)^{-1}A^Tb Ax^=A(ATA)1ATb x ^ = ( A T A ) − 1 A T b \hat{x}=(A^TA)^{-1}A^Tb x^=(ATA)1ATb

信号处理中的正交投影技术

  对于信号处理方向,矩阵论非常重要。
  假设空间由干扰源张成的子空间以及噪声子空间构成,那么如何去除干扰?
1.已知干扰
Q = C + P w I , C = D D H Q=C+P_wI, \quad C=DD^H Q=C+PwI,C=DDH
  其中, D D D代表干扰源, C C C是由干扰源构成的协方差矩阵, P w P_w Pw代表噪声功率。
  若干扰源已知,即 D D D已知,则干扰源可用以下投影矩阵对消,全空间-干扰子空间的投影矩阵。
P = I − D ( D H D ) − 1 D H P=I-D(D^HD)^{-1}D^H P=ID(DHD)1DH P D = I D − D I = 0 PD=ID-DI=0 PD=IDDI=0
  综上可以发现,利用正交投影技术,可以将干扰源去掉。

2.未知干扰
  对协方差矩阵 Q Q Q进行特征值分解,将干扰子空间和噪声子空间区分开。
Q = ∑ l = 1 L λ l e l ( i ) ( e l ( i ) ) H + ∑ l = L + 1 N λ l e l ( n ) ( e l ( n ) ) H Q=\sum_{l=1}^{L}{\lambda_le_{l}^{(i)}(e_{l}^{(i)})^H}+ \sum_{l=L+1}^{N}{\lambda_le_{l}^{(n)}(e_{l}^{(n)})^H} Q=l=1Lλlel(i)(el(i))H+l=L+1Nλlel(n)(el(n))H Q = E ( i ) Λ ( i ) ( E ( i ) ) ( H ) + E ( n ) Λ ( n ) ( E ( n ) ) ( H ) Q=E^{(i)}Λ^{(i)}(E^{(i)})^{(H)}+E^{(n)}Λ^{(n)}(E^{(n)})^{(H)} Q=E(i)Λ(i)(E(i))(H)+E(n)Λ(n)(E(n))(H) Q = Q ( i ) + Q ( n ) Q=Q^{(i)}+Q^{(n)} Q=Q(i)+Q(n)
  因为特征向量相互正交,所以令投影矩阵 P = E ( n ) ( E ( n ) ) ( H ) P=E^{(n)}(E^{(n)})^{(H)} P=E(n)(E(n))(H),此时 P D = 0 PD=0 PD=0,这里的 E ( i ) E^{(i)} E(i)就是由干扰 D D D构成的协方差矩阵,当然,也可以写成标准形式:
P = I − E ( i ) ( ( E ( i ) ) ( H ) E ( i ) ) − 1 ( E ( i ) ) ( H ) P=I-E^{(i)}((E^{(i)})^{(H)}E^{(i)})^{-1}(E^{(i)})^{(H)} P=IE(i)((E(i))(H)E(i))1(E(i))(H)
  因为不知道干扰,所以要对特征值及特征向量进行估计,区分哪些属于干扰子空间,哪些属于噪声子空间。

Ref:
https://www.cnblogs.com/bigmonkey/p/9897047.html

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请联系我们举报,一经查实,本站将立刻删除。

发布者:全栈程序员-站长,转载请注明出处:https://javaforall.net/186004.html原文链接:https://javaforall.net

(0)
全栈程序员-站长的头像全栈程序员-站长


相关推荐

  • Linux系统内核笔记[通俗易懂]

    Linux系统内核笔记[通俗易懂]一、课程介绍UNIX/Linux环境C语言,借助学习操作系统的接口的方法来学习、理解操作系统的运行机制以及一些网络协议C/C++、数据结构和算法与平台无关,重点是算法逻辑Uinx/Linux/Android/IOS平台相关,系统接口嵌入式/驱动/移植硬件相关,硬件接口 环境介绍 内存管理 文件操作 文件管理 信号处理 进程管理 进程通信 网络通信 线程管理 线程…

    2022年6月4日
    25
  • 鹰眼摄像头(OV7725)的使用

    鹰眼摄像头(OV7725)的使用原载:http://blog.csdn.net/lxk7280/article/details/26975233?utm_source=tuicool凭借着OV7620,将已经调好速度控制和角度控制的车子能跑起来了。基础功能实现后就开始对车子优化了。一个好的人眼睛最重要,同样对于一个好的平衡车,摄像头传感器最重要。因此我决心首先做的是对摄像头的优化。

    2022年4月19日
    119
  • JAVA保留两位小数(四舍五入)「建议收藏」

    JAVA保留两位小数(四舍五入)「建议收藏」importjava.math.BigDecimal;importjava.text.DecimalFormat;importjava.text.NumberFormat;publicclasstestNumber{ publicstaticdoublenum=3.1015926; publicstaticdoublezero=0.00000;

    2022年9月24日
    2
  • 女生学Java软件开发好就业吗

    女生学Java软件开发好就业吗  java在IT行业非常火热,近几年不仅引起了很多人的关注,女性同胞也非常关注这一行业,想要学习java技术,但是不知道女生学Java软件开发好就业吗?来看看下面的详细介绍就知道了。  女生学Java软件开发好就业吗?目前大多数想要参加Java培训学习女生的一个重要关注的话题,学习不用多说,只要是自己足够的努力,在选择一个靠谱的Java培训机构,还是比较容易学会的。有的时候我们可以看到同样的老师、同样的课程和同样的学习方式,整个Java培训过程下来女生很多是要比男生学习的更好。  所以,在学习

    2022年7月8日
    18
  • CSRF/XSRF概述

    CSRF/XSRF概述本文主要叙述了CSRF产生的原因,危害和预防方法!!

    2022年5月19日
    33
  • matlab改变图片分辨率_matlab导出600dpi

    matlab改变图片分辨率_matlab导出600dpi问题在使用matlab脚本进行绘图后希望使用函数保存图片,并设置分辨率,为后续修改提供方便方法1.saveas函数saveas(Fig,’SMAWireASpringBack’,’png’)获取图片句柄,设置图片名称,图片类型,这里没设置路径,详细参考matlab自带帮助很简单的2.print函数print(Fig,’SMAWireASpringBack’,’-dpng’…

    2025年11月9日
    4

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

关注全栈程序员社区公众号