线性代数投影矩阵的定义_线性代数a和线性代数b

线性代数投影矩阵的定义_线性代数a和线性代数bAbout投影矩阵  一个矩阵AAA既可以表示一种线性变换,又可以是一个子空间(由基张开的),还可以是一组坐标,甚是神奇。文章目录About投影矩阵一维空间的投影矩阵投影矩阵的多维推广投影的物理意义信号处理中的正交投影技术一维空间的投影矩阵  查看上图,ppp是bbb在aaa上的投影,可以发现,ppp和aaa是同向的,故可以表示为如下形式,其中xxx是标量p=axp=axp=ax  根据eee和ppp正交的条件,可以推导出x=aTbaTax=\frac{a^Tb}{a^Ta}x=aTaaT

大家好,又见面了,我是你们的朋友全栈君。如果您正在找激活码,请点击查看最新教程,关注关注公众号 “全栈程序员社区” 获取激活教程,可能之前旧版本教程已经失效.最新Idea2022.1教程亲测有效,一键激活。

Jetbrains全系列IDE稳定放心使用

About 投影矩阵

  一个矩阵 A A A既可以表示一种线性变换,又可以是一个子空间(由基张开的),还可以是一组坐标,甚是神奇。

一维空间的投影矩阵

在这里插入图片描述
  查看上图, p p p b b b a a a上的投影,可以发现, p p p a a a是同向的,故可以表示为如下形式,其中 x x x是标量
p = a x p=ax p=ax
  根据 e e e p p p正交的条件,可以推导出 x = a T b a T a x=\frac{a^Tb}{a^Ta} x=aTaaTb,则
p = a a T b a T a = a a T a T a b = P b p=a\frac{a^Tb}{a^Ta}=\frac{aa^T}{a^Ta}b=Pb p=aaTaaTb=aTaaaTb=Pb P = a a T a T a P=\frac{aa^T}{a^Ta} P=aTaaaT
  记 P P P为投影矩阵,说明了向量 b b b a a a上的投影 p p p是一个矩阵作用在 b b b上得到的。
P P P的性质
1. P = P T P=P^T P=PT,对称矩阵一定可以特征值分解
2. r a n k ( P ) = 1 rank(P)=1 rank(P)=1,由单个向量张开的子空间,秩为1
3. P = P 2 P=P^2 P=P2,投影只起一次效果

投影矩阵的多维推广

在这里插入图片描述
  向量 b b b在子空间上的投影是向量 b b b在向量 a a a上投影的推广。即此时向量 a a a变成矩阵 A A A,记 A A A的列空间包含两个向量 a 1 , a 2 a_1,a_2 a1,a2,依旧记向量 b b b A A A空间上的投影为 p p p,则:
p = A x = [ a 1 a 2 ] [ x 1 x 2 ] = a 1 x 1 + a 2 x 2 p=Ax=\begin{bmatrix} a_1&a_2\end{bmatrix}\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}=a_1x_1+a_2x_2 p=Ax=[a1a2][x1x2]=a1x1+a2x2
  误差向量 e e e垂直于列空间的平面,故:
{ a 1 T ( b − p ) = 0 a 2 T ( b − p ) = 0 \left\{ \begin{aligned} a_1^T(b-p)=0 \\ a_2^T(b-p)=0 \end{aligned} \right. {
a1T(bp)=0a2T(bp)=0
A T ( b − p ) = 0 A^T(b-p)=0 AT(bp)=0 A T ( b − A x ) = 0 A^T(b-Ax)=0 AT(bAx)=0 A T b = A T A x A^Tb=A^TAx ATb=ATAx x = ( A T A ) − 1 A T b x=(A^TA)^{-1}A^Tb x=(ATA)1ATb
  此时投影向量 p p p的形式为:
p = A x = A ( A T A ) − 1 A T b = P b p=Ax=A(A^TA)^{-1}A^Tb=Pb p=Ax=A(ATA)1ATb=Pb P = A ( A T A ) − 1 A T P=A(A^TA)^{-1}A^T P=A(ATA)1AT
  这存在一个疑问, A T A A^TA ATA是否可逆?若 A A A各列线性无关则可逆。
P P P的性质
1. P = P T P=P^T P=PT,对称矩阵一定可以特征值分解
2. r a n k ( P ) = r a n k ( A ) rank(P)=rank(A) rank(P)=rank(A),由 A A A张开,故等秩
3. P = P 2 P=P^2 P=P2,投影只起一次效果

投影的物理意义

  向量投影到子空间的物理意义是什么?查看线性方程组 A x = b Ax=b Ax=b
A = [ a 1 a 2 ⋯ a n ] , x = [ x 1 x 2 ⋮ x n ] A=\begin{bmatrix} a_1&a_2&\cdots&a_n\end{bmatrix}, x=\begin{bmatrix} x_1 \\ x_2 \\\vdots\\x_n \end{bmatrix} A=[a1a2an],x=x1x2xn b = a 1 x 1 + a 2 x 2 + ⋯ + a n x n b=a_1x_1+a_2x_2+\cdots+a_nx_n b=a1x1+a2x2++anxn
  上式的物理意义:把 A A A中的列向量看成 A A A的列空间中的基, x x x为坐标,则向量 b b b是否可用 A A A中的基线性表示,若出现以下情况:向量 b b b不在 A A A的列空间中,则上式无解。
  此时,若将 b b b投影至 A A A的子空间,即 p = P b = A ( A T A ) − 1 A T b p=Pb=A(A^TA)^{-1}A^Tb p=Pb=A(ATA)1ATb,求解 A x ^ = p A\hat{x}=p Ax^=p,因为 p p p最接近于 b b b,所以近似解 x ^ \hat{x} x^最接近于 x x x,以上即为最小二乘法的几何解释,数学描述如下:
A x = b Ax=b Ax=b A x ^ = A ( A T A ) − 1 A T b A\hat{x}=A(A^TA)^{-1}A^Tb Ax^=A(ATA)1ATb x ^ = ( A T A ) − 1 A T b \hat{x}=(A^TA)^{-1}A^Tb x^=(ATA)1ATb

信号处理中的正交投影技术

  对于信号处理方向,矩阵论非常重要。
  假设空间由干扰源张成的子空间以及噪声子空间构成,那么如何去除干扰?
1.已知干扰
Q = C + P w I , C = D D H Q=C+P_wI, \quad C=DD^H Q=C+PwI,C=DDH
  其中, D D D代表干扰源, C C C是由干扰源构成的协方差矩阵, P w P_w Pw代表噪声功率。
  若干扰源已知,即 D D D已知,则干扰源可用以下投影矩阵对消,全空间-干扰子空间的投影矩阵。
P = I − D ( D H D ) − 1 D H P=I-D(D^HD)^{-1}D^H P=ID(DHD)1DH P D = I D − D I = 0 PD=ID-DI=0 PD=IDDI=0
  综上可以发现,利用正交投影技术,可以将干扰源去掉。

2.未知干扰
  对协方差矩阵 Q Q Q进行特征值分解,将干扰子空间和噪声子空间区分开。
Q = ∑ l = 1 L λ l e l ( i ) ( e l ( i ) ) H + ∑ l = L + 1 N λ l e l ( n ) ( e l ( n ) ) H Q=\sum_{l=1}^{L}{\lambda_le_{l}^{(i)}(e_{l}^{(i)})^H}+ \sum_{l=L+1}^{N}{\lambda_le_{l}^{(n)}(e_{l}^{(n)})^H} Q=l=1Lλlel(i)(el(i))H+l=L+1Nλlel(n)(el(n))H Q = E ( i ) Λ ( i ) ( E ( i ) ) ( H ) + E ( n ) Λ ( n ) ( E ( n ) ) ( H ) Q=E^{(i)}Λ^{(i)}(E^{(i)})^{(H)}+E^{(n)}Λ^{(n)}(E^{(n)})^{(H)} Q=E(i)Λ(i)(E(i))(H)+E(n)Λ(n)(E(n))(H) Q = Q ( i ) + Q ( n ) Q=Q^{(i)}+Q^{(n)} Q=Q(i)+Q(n)
  因为特征向量相互正交,所以令投影矩阵 P = E ( n ) ( E ( n ) ) ( H ) P=E^{(n)}(E^{(n)})^{(H)} P=E(n)(E(n))(H),此时 P D = 0 PD=0 PD=0,这里的 E ( i ) E^{(i)} E(i)就是由干扰 D D D构成的协方差矩阵,当然,也可以写成标准形式:
P = I − E ( i ) ( ( E ( i ) ) ( H ) E ( i ) ) − 1 ( E ( i ) ) ( H ) P=I-E^{(i)}((E^{(i)})^{(H)}E^{(i)})^{-1}(E^{(i)})^{(H)} P=IE(i)((E(i))(H)E(i))1(E(i))(H)
  因为不知道干扰,所以要对特征值及特征向量进行估计,区分哪些属于干扰子空间,哪些属于噪声子空间。

Ref:
https://www.cnblogs.com/bigmonkey/p/9897047.html

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请联系我们举报,一经查实,本站将立刻删除。

发布者:全栈程序员-站长,转载请注明出处:https://javaforall.net/186004.html原文链接:https://javaforall.net

(0)
全栈程序员-站长的头像全栈程序员-站长


相关推荐

  • 重学《Java从入门到精通》第四版 清华大学出版社[通俗易懂]

    重学《Java从入门到精通》第四版 清华大学出版社[通俗易懂]作为一名刚毕业1年半的AndroidDeveloper,在工作后总发觉自己的Java功底很是欠缺。所以准备再重新学习一遍Java。温故而知新,可以为师矣。Java这门编程语言或许会被其他编程语言所代替,但其优秀的编程思想却永远不会消失,所以不用有所质疑,选择它没有错。Java这门编程语言我是从大二以看视频的方式开始学起的(那种零基础学Java视频)。在学校图书馆看了近1个月,大致了解了Java中的一些关键字、对象名称、常用特性等。至于手敲还是很懵懂、也不熟练。所以就淘宝选购了本《Java从入门到精通》

    2022年7月8日
    25
  • 漫画api 漫画源_小说接口api

    漫画api 漫画源_小说接口api免费的接口,小说api,视频api,漫画apihttp://api.pingcc.cnapi文档:https://easydoc.net/doc/45910076

    2022年10月3日
    1
  • 单点登录之CAS原理和实现

    单点登录之CAS原理和实现1.开源单点登录系统CAS入门1.1什么是单点登录单点登录(SingleSignOn),简称为SSO,是目前比较流行的企业业务整合的解决方案之一。SSO的定义是在多个应用系统中,用户只需要登录一次就可以访问所有相互信任的应用系统。我们目前的系统存在诸多子系统,而这些子系统是分别部署在不同的服务器中,那么使用传统方式的session是无法解决的,我们需要使用相关的单点登录技术来解决。1.2什

    2022年6月7日
    43
  • 批量梯度下降法(BGD)、随机梯度下降法(SGD)和小批量梯度下降法(MBGD)

    批量梯度下降法(BGD)、随机梯度下降法(SGD)和小批量梯度下降法(MBGD)梯度下降法作为机器学习中较常使用的优化算法,其有着三种不同的形式:批量梯度下降(BatchGradientDescent)、随机梯度下降(StochasticGradientDescent)以及小批量梯度下降(Mini-BatchGradientDescent)。其中小批量梯度下降法也常用在深度学习中进行模型的训练。接下来,我们将对这三种不同的梯度下降法进行理解。  为了便于理解,…

    2022年9月11日
    1
  • EagleEye_eyekey

    EagleEye_eyekey摘要:EagleEye作为阿里集团老牌的链路跟踪系统,其自身业务虽不在交易链路上,但却监控着全集团的链路状态,特别是在中间件的远程调用上,覆盖了集团绝大部分的场景,在问题排查和定位上发挥着巨大的作用,保障了各个系统的稳定性,为整个技术团队打赢这场战役保驾护航。作者:王华锋(水彧)背景 双十一一直是阿里巴巴集团每年要打的一场大战役。要打赢这场战役,技术上,不仅仅是几个应用、几个

    2022年4月19日
    64
  • 【插件】推荐两个谷歌浏览器的插件[通俗易懂]

    昨天加班到很晚,遇到一个很奇怪的问题,今天才大概定位产生的原因! 很多时候问题很难复现,导致排查问题的效率就不是那么的高效!本来想着写一下这次排查问题的总结,还是后面有时间在写。今天分享两个谷歌浏览器(程序员必备浏览器)的插件,我一直在用,特别好用,所以推荐给你!CSDN中屏蔽百度广告 – Adblock Plus插件我自己有时候会在CSDN写一些技术总结等,每次访问都会百度广告,真是TM…

    2022年2月27日
    163

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

关注全栈程序员社区公众号