线性代数投影矩阵的定义_线性代数a和线性代数b

线性代数投影矩阵的定义_线性代数a和线性代数bAbout投影矩阵  一个矩阵AAA既可以表示一种线性变换,又可以是一个子空间(由基张开的),还可以是一组坐标,甚是神奇。文章目录About投影矩阵一维空间的投影矩阵投影矩阵的多维推广投影的物理意义信号处理中的正交投影技术一维空间的投影矩阵  查看上图,ppp是bbb在aaa上的投影,可以发现,ppp和aaa是同向的,故可以表示为如下形式,其中xxx是标量p=axp=axp=ax  根据eee和ppp正交的条件,可以推导出x=aTbaTax=\frac{a^Tb}{a^Ta}x=aTaaT

大家好,又见面了,我是你们的朋友全栈君。如果您正在找激活码,请点击查看最新教程,关注关注公众号 “全栈程序员社区” 获取激活教程,可能之前旧版本教程已经失效.最新Idea2022.1教程亲测有效,一键激活。

Jetbrains全系列IDE稳定放心使用

About 投影矩阵

  一个矩阵 A A A既可以表示一种线性变换,又可以是一个子空间(由基张开的),还可以是一组坐标,甚是神奇。

一维空间的投影矩阵

在这里插入图片描述
  查看上图, p p p b b b a a a上的投影,可以发现, p p p a a a是同向的,故可以表示为如下形式,其中 x x x是标量
p = a x p=ax p=ax
  根据 e e e p p p正交的条件,可以推导出 x = a T b a T a x=\frac{a^Tb}{a^Ta} x=aTaaTb,则
p = a a T b a T a = a a T a T a b = P b p=a\frac{a^Tb}{a^Ta}=\frac{aa^T}{a^Ta}b=Pb p=aaTaaTb=aTaaaTb=Pb P = a a T a T a P=\frac{aa^T}{a^Ta} P=aTaaaT
  记 P P P为投影矩阵,说明了向量 b b b a a a上的投影 p p p是一个矩阵作用在 b b b上得到的。
P P P的性质
1. P = P T P=P^T P=PT,对称矩阵一定可以特征值分解
2. r a n k ( P ) = 1 rank(P)=1 rank(P)=1,由单个向量张开的子空间,秩为1
3. P = P 2 P=P^2 P=P2,投影只起一次效果

投影矩阵的多维推广

在这里插入图片描述
  向量 b b b在子空间上的投影是向量 b b b在向量 a a a上投影的推广。即此时向量 a a a变成矩阵 A A A,记 A A A的列空间包含两个向量 a 1 , a 2 a_1,a_2 a1,a2,依旧记向量 b b b A A A空间上的投影为 p p p,则:
p = A x = [ a 1 a 2 ] [ x 1 x 2 ] = a 1 x 1 + a 2 x 2 p=Ax=\begin{bmatrix} a_1&a_2\end{bmatrix}\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}=a_1x_1+a_2x_2 p=Ax=[a1a2][x1x2]=a1x1+a2x2
  误差向量 e e e垂直于列空间的平面,故:
{ a 1 T ( b − p ) = 0 a 2 T ( b − p ) = 0 \left\{ \begin{aligned} a_1^T(b-p)=0 \\ a_2^T(b-p)=0 \end{aligned} \right. {
a1T(bp)=0a2T(bp)=0
A T ( b − p ) = 0 A^T(b-p)=0 AT(bp)=0 A T ( b − A x ) = 0 A^T(b-Ax)=0 AT(bAx)=0 A T b = A T A x A^Tb=A^TAx ATb=ATAx x = ( A T A ) − 1 A T b x=(A^TA)^{-1}A^Tb x=(ATA)1ATb
  此时投影向量 p p p的形式为:
p = A x = A ( A T A ) − 1 A T b = P b p=Ax=A(A^TA)^{-1}A^Tb=Pb p=Ax=A(ATA)1ATb=Pb P = A ( A T A ) − 1 A T P=A(A^TA)^{-1}A^T P=A(ATA)1AT
  这存在一个疑问, A T A A^TA ATA是否可逆?若 A A A各列线性无关则可逆。
P P P的性质
1. P = P T P=P^T P=PT,对称矩阵一定可以特征值分解
2. r a n k ( P ) = r a n k ( A ) rank(P)=rank(A) rank(P)=rank(A),由 A A A张开,故等秩
3. P = P 2 P=P^2 P=P2,投影只起一次效果

投影的物理意义

  向量投影到子空间的物理意义是什么?查看线性方程组 A x = b Ax=b Ax=b
A = [ a 1 a 2 ⋯ a n ] , x = [ x 1 x 2 ⋮ x n ] A=\begin{bmatrix} a_1&a_2&\cdots&a_n\end{bmatrix}, x=\begin{bmatrix} x_1 \\ x_2 \\\vdots\\x_n \end{bmatrix} A=[a1a2an],x=x1x2xn b = a 1 x 1 + a 2 x 2 + ⋯ + a n x n b=a_1x_1+a_2x_2+\cdots+a_nx_n b=a1x1+a2x2++anxn
  上式的物理意义:把 A A A中的列向量看成 A A A的列空间中的基, x x x为坐标,则向量 b b b是否可用 A A A中的基线性表示,若出现以下情况:向量 b b b不在 A A A的列空间中,则上式无解。
  此时,若将 b b b投影至 A A A的子空间,即 p = P b = A ( A T A ) − 1 A T b p=Pb=A(A^TA)^{-1}A^Tb p=Pb=A(ATA)1ATb,求解 A x ^ = p A\hat{x}=p Ax^=p,因为 p p p最接近于 b b b,所以近似解 x ^ \hat{x} x^最接近于 x x x,以上即为最小二乘法的几何解释,数学描述如下:
A x = b Ax=b Ax=b A x ^ = A ( A T A ) − 1 A T b A\hat{x}=A(A^TA)^{-1}A^Tb Ax^=A(ATA)1ATb x ^ = ( A T A ) − 1 A T b \hat{x}=(A^TA)^{-1}A^Tb x^=(ATA)1ATb

信号处理中的正交投影技术

  对于信号处理方向,矩阵论非常重要。
  假设空间由干扰源张成的子空间以及噪声子空间构成,那么如何去除干扰?
1.已知干扰
Q = C + P w I , C = D D H Q=C+P_wI, \quad C=DD^H Q=C+PwI,C=DDH
  其中, D D D代表干扰源, C C C是由干扰源构成的协方差矩阵, P w P_w Pw代表噪声功率。
  若干扰源已知,即 D D D已知,则干扰源可用以下投影矩阵对消,全空间-干扰子空间的投影矩阵。
P = I − D ( D H D ) − 1 D H P=I-D(D^HD)^{-1}D^H P=ID(DHD)1DH P D = I D − D I = 0 PD=ID-DI=0 PD=IDDI=0
  综上可以发现,利用正交投影技术,可以将干扰源去掉。

2.未知干扰
  对协方差矩阵 Q Q Q进行特征值分解,将干扰子空间和噪声子空间区分开。
Q = ∑ l = 1 L λ l e l ( i ) ( e l ( i ) ) H + ∑ l = L + 1 N λ l e l ( n ) ( e l ( n ) ) H Q=\sum_{l=1}^{L}{\lambda_le_{l}^{(i)}(e_{l}^{(i)})^H}+ \sum_{l=L+1}^{N}{\lambda_le_{l}^{(n)}(e_{l}^{(n)})^H} Q=l=1Lλlel(i)(el(i))H+l=L+1Nλlel(n)(el(n))H Q = E ( i ) Λ ( i ) ( E ( i ) ) ( H ) + E ( n ) Λ ( n ) ( E ( n ) ) ( H ) Q=E^{(i)}Λ^{(i)}(E^{(i)})^{(H)}+E^{(n)}Λ^{(n)}(E^{(n)})^{(H)} Q=E(i)Λ(i)(E(i))(H)+E(n)Λ(n)(E(n))(H) Q = Q ( i ) + Q ( n ) Q=Q^{(i)}+Q^{(n)} Q=Q(i)+Q(n)
  因为特征向量相互正交,所以令投影矩阵 P = E ( n ) ( E ( n ) ) ( H ) P=E^{(n)}(E^{(n)})^{(H)} P=E(n)(E(n))(H),此时 P D = 0 PD=0 PD=0,这里的 E ( i ) E^{(i)} E(i)就是由干扰 D D D构成的协方差矩阵,当然,也可以写成标准形式:
P = I − E ( i ) ( ( E ( i ) ) ( H ) E ( i ) ) − 1 ( E ( i ) ) ( H ) P=I-E^{(i)}((E^{(i)})^{(H)}E^{(i)})^{-1}(E^{(i)})^{(H)} P=IE(i)((E(i))(H)E(i))1(E(i))(H)
  因为不知道干扰,所以要对特征值及特征向量进行估计,区分哪些属于干扰子空间,哪些属于噪声子空间。

Ref:
https://www.cnblogs.com/bigmonkey/p/9897047.html

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请联系我们举报,一经查实,本站将立刻删除。

发布者:全栈程序员-站长,转载请注明出处:https://javaforall.net/186004.html原文链接:https://javaforall.net

(0)
全栈程序员-站长的头像全栈程序员-站长


相关推荐

  • java项目中的classpath到底指向的哪里[通俗易懂]

    今天在项目里看到好多地方都用到了类路径,并且自己对路径还不是很清楚,所以就在网上百度了一下!上面图片的意思简单来说,就是classpath只能表示lib目录和WEB-inf/classes路径下的文件,calsspath不能表示的src路径下面的文件,但是从项目结构来看,配置文件一般是不放在放在WEB-INF下面啊,并且也没有看到classes路径,lib目录不是放依赖ja…

    2022年4月4日
    111
  • nginx源代码分析–event事件驱动初始化

    nginx源代码分析–event事件驱动初始化

    2021年12月13日
    32
  • matlab中doc怎么用_ipaddock栏设置

    matlab中doc怎么用_ipaddock栏设置dock栏是是苹果IOS系统或者MAC系统自带任务栏以及切换的快捷窗口,一般活动桌面为最下方固定的界面就是dock栏;MAC系统中的Dock栏,可以显示、切换下运行的程序,也可以单击上面的程序图标则启动那个程序。本文操作环境:iOS12.3.1系统,iPhone11。Dock栏就是苹果IOS系统或者MAC系统自带任务栏以及切换的快捷窗口,一般活动桌面为最下方固定的界面就是dock栏。MAC系统…

    2022年9月12日
    0
  • 超详细的springBoot学习笔记

    超详细的springBoot学习笔记SpringBoot1.SpringBoot简介Spring诞生时是Java企业版(JavaEnterpriseEdition,JEE,也称J2EE)的轻量级代替品。无需开发重量级的EnterpriseJavaBean(EJB),Spring为企业级Java开发提供了一种相…

    2022年10月21日
    0
  • 十进制小数分数与二进制的转换

    十进制小数分数与二进制的转换十进制分数转换为二进制数使用短除法。例如将十进制分数11/28转换为二进制数,过程如下:1、首先将分子分母分别转换成二进制(11)10=(1011)2(28)10=(11100)22、使用短除,借位时是借2,商只能是0或1所以:11/28=1011/11100=0.01100100…十进制小数转换为二进制小数十进制数的整数位是二进制数的整数位,…

    2022年9月25日
    0
  • Supplier的使用[通俗易懂]

    Supplier的使用[通俗易懂]背景:如何将一个域关联的属性搞到一个类中,可以使用Supplier这个类publicclassSupplierTest{publicenumPersonEnum{NAME(“name”,PersonEnum::getName),AGE(“age”,PersonEnum::getAge);…

    2022年10月27日
    0

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

关注全栈程序员社区公众号