【强化学习】Q-Learning算法详解

【强化学习】Q-Learning算法详解QLearning是强化学习算法中值迭代的算法,Q即为Q(s,a)就是在某一时刻的s状态下(s∈S),采取a(a∈A)动作能够获得收益的期望,环境会根据agent的动作反馈相应的回报rewardr,所以算法的主要思想就是将State与Action构建成一张Q-table来存储Q值,然后根据Q值来选取动作获得较大的收益。

大家好,又见面了,我是你们的朋友全栈君。如果您正在找激活码,请点击查看最新教程,关注关注公众号 “全栈程序员社区” 获取激活教程,可能之前旧版本教程已经失效.最新Idea2022.1教程亲测有效,一键激活。

Jetbrains全系列IDE稳定放心使用

【强化学习】Q-Learning详解

https://morvanzhou.github.io/tutorials/machine-learning/reinforcement-learning/2-1-general-rl/ 莫凡大神的有趣的强化学习视频通俗易懂

发现了很多RL资料搬砖过来,刚入门的可以用得上

David Silver 博士的 UCL 公开课:http://www0.cs.ucl.ac.uk/staff/d.silver/web/Teaching.html
DeepMind 和 UCL 的DL、RL课程:https://www.youtube.com/playlist?list=PLqYmG7hTraZDNJre23vqCGIVpfZ_K2RZs
Sergey Levine 的DRL课程:http://rail.eecs.berkeley.edu/deeprlcourse/
OpenAI 的 Spinning Up in Deep RL:https://blog.openai.com/spinning-up-in-deep-rl/
关于深度强化学习良心paper:https://arxiv.org/abs/1810.06339

1、算法思想

QLearning是强化学习算法中value-based的算法,Q即为Q(s,a)就是在某一时刻的 s 状态下(s∈S),采取 动作a (a∈A)动作能够获得收益的期望,环境会根据agent的动作反馈相应的回报reward r,所以算法的主要思想就是将State与Action构建成一张Q-table来存储Q值,然后根据Q值来选取能够获得最大的收益的动作。

Q-Table a1 a2
s1 q(s1,a1) q(s1,a2)
s2 q(s2,a1) q(s2,a2)
s3 q(s3,a1) q(s3,a2)

2、公式推导

举个例子如图有一个GridWorld的游戏从起点出发到达终点为胜利掉进陷阱为失败。智能体(Agent)、环境状态(environment)、奖励(reward)、动作(action)可以将问题抽象成一个马尔科夫决策过程,我们在每个格子都算是一个状态 s t s_t st , π(a|s)在s状态下采取动作a策略 。 P(s’|s,a)也可以写成 P s s ′ a P_{ss’}^a Pssa为在s状态下选择a动作转换到下一个状态s’的概率。R(s’|s,a)表示在s状态下采取a动作转移到s’的奖励reward,我们的目的很明确就是找到一条能够到达终点获得最大奖赏的策略。
这里写图片描述
所以目标就是求出累计奖励最大的策略的期望:

Goal: max ⁡ π E [ ∑ t = 0 H γ t R ( S t , A t , S t + 1 ) ∣ π ] \max_πE[\sum_{t=0}^{H}γ^tR(S_t,A_t,S_{t+1}) | π] maxπE[t=0HγtR(St,At,St+1)π]

Qlearning的主要优势就是使用了时间差分法TD(融合了蒙特卡洛和动态规划)能够进行离线学习, 使用bellman方程可以对马尔科夫过程求解最优策略

贝尔曼方程

通过bellman方程求解马尔科夫决策过程的最佳决策序列,状态值函数 V π ( s ) V_\pi(s) Vπ(s)可以评价当前状态的好坏,每个状态的值不仅由当前状态决定还要由后面的状态决定,所以状态的累计奖励求期望就可得出当前s的状态值函数V(s)。bellman方程如下

V π ( s ) = E ( U t ∣ S t = s ) V_π(s) = E(U_t|S_t = s) Vπ(s)=E(UtSt=s)
V π ( s ) = E π [ R t + 1 + γ [ R t + 2 + γ [ . . . . . . . ] ] ∣ S t = s ] V_π(s) = E_π[R_{t+1}+γ[R_{t+2} + γ[…….]]|S_t = s] Vπ(s)=Eπ[Rt+1+γ[Rt+2+γ[.......]]St=s]
V π ( s ) = E π [ R t + 1 + γ V ( s ′ ) ∣ S t = s ] V_π(s) = E_π[R_{t+1}+γV(s’)|S_t = s] Vπ(s)=Eπ[Rt+1+γV(s)St=s]

最优累计期望可用 V ∗ ( s ) V^*(s) V(s)表示,可知最优值函数就是 V ∗ ( s ) = m a x π V π ( s ) V^*(s)=max_πV_\pi(s) V(s)=maxπVπ(s)
V ∗ ( s ) = max ⁡ π E [ ∑ t = 0 H γ t R ( S t , A t , S t + 1 ) ∣ π , s 0 = s ] V^*(s)=\max_πE[\sum_{t=0}^{H}γ^tR(S_t,A_t,S_{t+1}) | π,s_0=s] V(s)=maxπE[t=0HγtR(St,At,St+1)π,s0=s]

Q(s,a)状态动作值函数
q π ( s , a ) = E π [ r t + 1 + γ r t + 2 + γ 2 r t + 3 + . . . . ∣ A t = a , S t = s ] q_π(s,a) = E_π[r_{t+1}+γr_{t+2}+γ^2r_{t+3}+….|A_t=a,S_t=s] qπ(s,a)=Eπ[rt+1+γrt+2+γ2rt+3+....At=a,St=s]
q π ( s , a ) = E π [ G t ∣ A t = a , S t = s ] q_π(s,a) = E_π[G_t|A_t=a,S_t=s] qπ(s,a)=Eπ[GtAt=a,St=s]
其中 G t G_t Gt是t时刻开始的总折扣奖励,从这里我们能看出来 γ衰变值对Q函数的影响,γ越接近于1代表它越有远见会着重考虑后续状态的的价值,当γ接近0的时候就会变得近视只考虑当前的利益的影响。所以从0到1,算法就会越来越会考虑后续回报的影响。
q π ( s , a ) = E π [ R t + 1 + γ q π ( S t + 1 , A t + 1 ) ∣ A t = a , S t = s ] q_π(s,a) = E_π[R_{t+1}+γq_π(S_{t+1},A_{t+1})|A_t=a,S_t=s] qπ(s,a)=Eπ[Rt+1+γqπ(St+1,At+1)At=a,St=s]

最优价值动作函数 Q ∗ ( s , a ) = m a x π Q ∗ ( s , a ) Q^*(s,a)=max_\pi Q^*(s,a) Q(s,a)=maxπQ(s,a),打开期望如下
Q ∗ ( s , a ) = ∑ s ′ P ( s ′ ∣ s , a ) ( R ( s , a , s ′ ) + γ max ⁡ a ′ Q ∗ ( s ′ , a ′ ) ) Q^*(s,a)=\sum_{s’} P(s’|s,a)(R(s,a,s’)+γ\max_{a’}Q^*(s’,a’)) Q(s,a)=sP(ss,a)(R(s,a,s)+γmaxaQ(s,a))

Bellman方程实际上就是价值动作函数的转换关系

V π ( s ) = ∑ a ∈ A π ( a ∣ s ) q π ( s , a ) V_π(s) = \sum_{a∈A}π(a|s)q_π(s,a) Vπ(s)=aAπ(as)qπ(s,a)
q π ( s , a ) = R s a + γ ∑ s ′ ∈ S P s s ′ a V π ( s ′ ) q_π(s,a) = R_s^a + γ\sum_{s’∈S}P_{ss’}^aV_π(s’) qπ(s,a)=Rsa+γsSPssaVπ(s)
V π ( s ) = ∑ a ′ ∈ A π ( a ∣ s ) [ R s a + γ ∑ s ′ P s s ′ a V π ( s ′ ) ] V_π(s)=\sum_{a’∈A}π(a|s)[R_s^a+γ\sum_{s’}P_{ss’}^aV_π(s’)] Vπ(s)=aAπ(as)[Rsa+γsPssaVπ(s)]

Q值迭代公式
根据下图更直观的了解V(s)与Q(s,a)的关系
V(s)与Q(s,a)的关系

时间差分法 https://blog.csdn.net/qq_30615903/article/details/80821061

时间差分方法结合了蒙特卡罗的采样方法和动态规划方法的bootstrapping(利用后继状态的值函数估计当前值函数)使得他可以适用于model-free的算法并且是单步更新,速度更快。值函数计算方式如下

V ( s ) ← V ( s ) + α ( R t + 1 + γ V ( s ′ ) − V ( s ) ) V(s)←V(s)+\alpha (R_{t+1}+\gamma V(s’)-V(s)) V(s)V(s)+α(Rt+1+γV(s)V(s))

其中 R t + 1 + γ V ( s ′ ) R_{t+1}+\gamma V(s’) Rt+1+γV(s)被称为TD目标, δ t = R t + 1 + γ V ( s ′ ) − V ( s ) \delta_t=R_{t+1}+\gamma V(s’)-V(s) δt=Rt+1+γV(s)V(s) 称为TD偏差。

3、更新公式

根据以上推导可以对Q值进行计算,所以有了Q值我们就可以进行学习,也就是Q-table的更新过程,其中α为学习率γ为奖励性衰变系数,采用时间差分法的方法进行更新。

Q ( s , a ) ← Q ( s , a ) + α [ r + γ m a x a ′ Q ( s ′ , a ′ ) − Q ( s , a ) ] Q(s,a) ← Q(s,a) + α[r + γmax_{a’}Q(s’,a’)-Q(s,a)] Q(s,a)Q(s,a)+α[r+γmaxaQ(s,a)Q(s,a)]

上式就是Q-learning更新的公式,根据下一个状态s’中选取最大的 Q ( s ′ , a ′ ) Q(s’,a’) Q(s,a)值乘以衰变γ加上真实回报值最为Q现实,而根据过往Q表里面的Q(s,a)作为Q估计。
在这里插入图片描述
这里写图片描述

4、实现代码

代码来自网上各路大神的源码,非原创,据反映没图片跑不通,所以建了个github,https://github.com/xshura/reinforcement_learning
Q-Learning agent

# -*- coding: utf-8 -*-
import random
from environment import Env
from collections import defaultdict


class QLearningAgent:
    def __init__(self, actions):
        # actions = [0, 1, 2, 3]
        self.actions = actions
        self.learning_rate = 0.01
        self.discount_factor = 0.9
        self.epsilon = 0.1
        self.q_table = defaultdict(lambda: [0.0, 0.0, 0.0, 0.0])

    # 采样 <s, a, r, s'>
    def learn(self, state, action, reward, next_state):
        current_q = self.q_table[state][action]
        # 贝尔曼方程更新
        new_q = reward + self.discount_factor * max(self.q_table[next_state])
        self.q_table[state][action] += self.learning_rate * (new_q - current_q)

    # 从Q-table中选取动作
    def get_action(self, state):
        if np.random.rand() < self.epsilon:
            # 贪婪策略随机探索动作
            action = np.random.choice(self.actions)
        else:
            # 从q表中选择
            state_action = self.q_table[state]
            action = self.arg_max(state_action)
        return action

    @staticmethod
    def arg_max(state_action):
        max_index_list = []
        max_value = state_action[0]
        for index, value in enumerate(state_action):
            if value > max_value:
                max_index_list.clear()
                max_value = value
                max_index_list.append(index)
            elif value == max_value:
                max_index_list.append(index)
        return random.choice(max_index_list)


if __name__ == "__main__":
    env = Env()
    agent = QLearningAgent(actions=list(range(env.n_actions)))
    for episode in range(1000):
        state = env.reset()
        while True:
            env.render()
            # agent产生动作
            action = agent.get_action(str(state))
            next_state, reward, done = env.step(action)
            # 更新Q表
            agent.learn(str(state), action, reward, str(next_state))
            state = next_state
            env.print_value_all(agent.q_table)
            # 当到达终点就终止游戏开始新一轮训练
            if done:
                break

环境部分

import time
import numpy as np
import tkinter as tk
from PIL import ImageTk, Image

np.random.seed(1)
PhotoImage = ImageTk.PhotoImage
UNIT = 100
HEIGHT = 5
WIDTH = 5


class Env(tk.Tk):
    def __init__(self):
        super(Env, self).__init__()
        self.action_space = ['u', 'd', 'l', 'r']
        self.n_actions = len(self.action_space)
        self.title('Q Learning')
        self.geometry('{0}x{1}'.format(HEIGHT * UNIT, HEIGHT * UNIT))
        self.shapes = self.load_images()
        self.canvas = self._build_canvas()
        self.texts = []

    def _build_canvas(self):
        canvas = tk.Canvas(self, bg='white',
                           height=HEIGHT * UNIT,
                           width=WIDTH * UNIT)
        # create grids
        for c in range(0, WIDTH * UNIT, UNIT):  # 0~400 by 80
            x0, y0, x1, y1 = c, 0, c, HEIGHT * UNIT
            canvas.create_line(x0, y0, x1, y1)
        for r in range(0, HEIGHT * UNIT, UNIT):  # 0~400 by 80
            x0, y0, x1, y1 = 0, r, HEIGHT * UNIT, r
            canvas.create_line(x0, y0, x1, y1)

        # add img to canvas
        self.rectangle = canvas.create_image(50, 50, image=self.shapes[0])
        self.triangle1 = canvas.create_image(250, 150, image=self.shapes[1])
        self.triangle2 = canvas.create_image(150, 250, image=self.shapes[1])
        self.circle = canvas.create_image(250, 250, image=self.shapes[2])

        # pack all
        canvas.pack()

        return canvas

    def load_images(self):
        rectangle = PhotoImage(
            Image.open("../img/rectangle.png").resize((65, 65)))
        triangle = PhotoImage(
            Image.open("../img/triangle.png").resize((65, 65)))
        circle = PhotoImage(
            Image.open("../img/circle.png").resize((65, 65)))

        return rectangle, triangle, circle

    def text_value(self, row, col, contents, action, font='Helvetica', size=10,
                   style='normal', anchor="nw"):
        if action == 0:
            origin_x, origin_y = 7, 42
        elif action == 1:
            origin_x, origin_y = 85, 42
        elif action == 2:
            origin_x, origin_y = 42, 5
        else:
            origin_x, origin_y = 42, 77

        x, y = origin_y + (UNIT * col), origin_x + (UNIT * row)
        font = (font, str(size), style)
        text = self.canvas.create_text(x, y, fill="black", text=contents,
                                       font=font, anchor=anchor)
        return self.texts.append(text)

    def print_value_all(self, q_table):
        for i in self.texts:
            self.canvas.delete(i)
        self.texts.clear()
        for i in range(HEIGHT):
            for j in range(WIDTH):
                for action in range(0, 4):
                    state = [i, j]
                    if str(state) in q_table.keys():
                        temp = q_table[str(state)][action]
                        self.text_value(j, i, round(temp, 2), action)

    def coords_to_state(self, coords):
        x = int((coords[0] - 50) / 100)
        y = int((coords[1] - 50) / 100)
        return [x, y]

    def state_to_coords(self, state):
        x = int(state[0] * 100 + 50)
        y = int(state[1] * 100 + 50)
        return [x, y]

    def reset(self):
        self.update()
        time.sleep(0.5)
        x, y = self.canvas.coords(self.rectangle)
        self.canvas.move(self.rectangle, UNIT / 2 - x, UNIT / 2 - y)
        self.render()
        # return observation
        return self.coords_to_state(self.canvas.coords(self.rectangle))

    def step(self, action):
        state = self.canvas.coords(self.rectangle)
        base_action = np.array([0, 0])
        self.render()

        if action == 0:  # up
            if state[1] > UNIT:
                base_action[1] -= UNIT
        elif action == 1:  # down
            if state[1] < (HEIGHT - 1) * UNIT:
                base_action[1] += UNIT
        elif action == 2:  # left
            if state[0] > UNIT:
                base_action[0] -= UNIT
        elif action == 3:  # right
            if state[0] < (WIDTH - 1) * UNIT:
                base_action[0] += UNIT

        # 移动
        self.canvas.move(self.rectangle, base_action[0], base_action[1])
        self.canvas.tag_raise(self.rectangle)
        next_state = self.canvas.coords(self.rectangle)
        # 判断得分条件
        if next_state == self.canvas.coords(self.circle):
            reward = 100
            done = True
        elif next_state in [self.canvas.coords(self.triangle1),
                            self.canvas.coords(self.triangle2)]:
            reward = -100
            done = True
        else:
            reward = 0
            done = False

        next_state = self.coords_to_state(next_state)
        return next_state, reward, done

    # 渲染环境
    def render(self):
        time.sleep(0.03)
        self.update()
版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请联系我们举报,一经查实,本站将立刻删除。

发布者:全栈程序员-站长,转载请注明出处:https://javaforall.net/186142.html原文链接:https://javaforall.net

(0)
全栈程序员-站长的头像全栈程序员-站长


相关推荐

  • 静态变量存储在那个区? – 转[通俗易懂]

    静态变量存储在那个区? – 转[通俗易懂]一时间忘咯然后就去转载..静态变量存储在__区A全局区B堆C栈D常量区参考答案:A知识点内存到底分几个区?1、栈区(stack)—由编译器自动分配释放,存放函数的参数值,局部变量的值等。2、堆区(heap)—一般由程序员分配释放,若程序员不释放,程序结束时可能由os回收。注意它与数据结构中的堆是两回事,分配方式倒是类似于链表。3、全局区(静态区)(static)—全局变量和静态变量的存储是放在一块的,初始化的全局变量和静态变量在一块区域…

    2022年6月14日
    43
  • java中垃圾回收机制_垃圾回收机制算法

    java中垃圾回收机制_垃圾回收机制算法一、如何确定某个对象是“垃圾”?这一小节先了解一个最基本的问题:如果确定某个对象是“垃圾”?既然垃圾收集器的任务是回收垃圾对象所占的空间供新的对象使用,那么垃圾收集器如何确定某个对象是“垃圾”?通过什么方法判断一个对象可以被回收了。在java中是通过引用来和对象进行关联的,也就是说如果要操作对象,必须通过引用来进行。那么很显然一个简单的办法就是通过引用计数来判断一个对象是否可以被回收。不失…

    2022年10月13日
    0
  • ant-design-vue文档_antdesign原型设计

    ant-design-vue文档_antdesign原型设计antdesignofvue文件上传action设置上传的地址headers设置上传的请求头部fileList接收已经上传的文件列表(受控)可以控制文件数量事件change记录上传文件改变时的状态,当status为‘done’时将文件列表的地址存到表单中,随表单提交至后台数据库具体用法参考antdesign官网:https://www.antdv.com/components/upload-cn/…

    2022年8月15日
    2
  • noip2012借教室_noip 百度网盘

    noip2012借教室_noip 百度网盘借教室在大学期间,经常需要租借教室。大到院系举办活动,小到学习小组自习讨论,都需要向学校申请借教室。教室的大小功能不同,借教室人的身份不同,借教室的手续也不一样。面对海量租借教室的信息,我们自然希望编程解决这个问题。我们需要处理接下来n天的借教室信息,其中第i天学校有ri个教室可供租借。共有m份订单,每份订单用三个正整数描述,分别为dj,sj,tj,表示某租借者需要从第sj天到第tj天租借教室(

    2022年8月22日
    4
  • vue的双向绑定原理及实现_vue绑定数据

    vue的双向绑定原理及实现_vue绑定数据一、什么是双向绑定我们先从单向绑定切入单向绑定非常简单,就是把Model绑定到View,当我们用JavaScript代码更新Model时,View就会自动更新双向绑定就很容易联想到了,在单向绑定的基础上,用户更新了View,Model的数据也自动被更新了,这种情况就是双向绑定举个栗子当用户填写表单时,View的状态就被更新了,如果此时可以自动更新Model的状态,那就相当于我们把Model和View做了双向绑定关系图如下二、双向绑定的原理是什么我们都知道Vue是数

    2022年9月14日
    0
  • ldap服务器是什么

    ldap服务器是什么LDAP服务器简单来说它是一种得到某些数据的快捷方式,同时LDAP服务器也是一个协议,它经常被用作集体的地址本使用,甚至可以做到更加庞大。它是一种特殊的数据库,与一般的数据库相比有很大的差距,LDAP服务器的读性与一般服务器相比更加优秀。同时LDAP服务器在查询上总了很多的优化,所以利用它可以快速查询出想要得到的结果,当然它也有缺陷,比如在更新方面,它会更新的很慢。LDAP服务器的目录有哪些优势…

    2022年5月14日
    59

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

关注全栈程序员社区公众号