tcp为什么是三次握手不是两次握手_tcp四次挥手

tcp为什么是三次握手不是两次握手_tcp四次挥手一、为什么握手是三次,而不是两次或者四次?答:两次不安全,四次没必要。tcp通信需要确保双方都具有数据收发的能力,因此双方都要发送SYN确保对方具有通信的能力二、为什么挥手是四次而不是三次?答:发送FIN包只能表示对方不再发送数据了,不代表对方不再接收数据,因此被动关闭方进行ACK回复之后有可能还会继续发送数据,等到不再发送数据了才会发送下一个FIN包,因此FIN包和ACK包是分开的…

大家好,又见面了,我是你们的朋友全栈君。如果您正在找激活码,请点击查看最新教程,关注关注公众号 “全栈程序员社区” 获取激活教程,可能之前旧版本教程已经失效.最新Idea2022.1教程亲测有效,一键激活。

Jetbrains全系列IDE稳定放心使用

TCP的定义

TCP全称为Transmission Control Protocol(传输控制协议),是一种面向连接的可靠的基于字节流的传输层通信协议。TCP是为了在不可靠的互联网络上提供可靠的端到端字节流而专门设计的一个传输协议。

TCP的三次握手和四次挥手,可以说是老生常谈的经典问题了,通常也作为各大公司常见的面试考题,具有一定的水平区分度。看似简单的面试问题。如果你的回答不符合面试官期待的水准,有可能就直接凉凉了。

本文会围绕,从三次握手和四次挥手相关的一系列核心问题,分享如何更准确回答和应对常见的面试问题,以后面对再刁钻的面试官,你都可以随意地跟他扯皮了
在这里插入图片描述

优雅回答三次握手

三次握手服务端新建套接字,绑定地址信息后开始监听,进入LISTEN状态。客户端新建套接字绑定地址信息后调用connect,发送连接请求SYN,并进入SYN_SENT状态,等待服务器的确认。服务端一旦监听到连接请求,就会将连接放入内核等待队列中,并向客户端发送SYN和确认报文段ACK,进入SYN_RECD状态。客户端收到SYN+ACK报文后向服务端发送确认报文段ACK,并进入ESTABLISHED状态,开始读写数据。服务端一旦收到客户端的确认报文,就进入ESTABLISHED状态,就可以进行读写数据了
在这里插入图片描述

为什么握手是三次,而不是两次或者四次?

两次不安全,四次没必要。tcp通信需要确保双方都具有数据收发的能力,得到ACK响应则认为对方具有数据收发的能力,因此双方都要发送SYN确保对方具有通信的能力。第一次握手是客户端发送SYN,服务端接收,服务端得出客户端的发送能力和服务端的接收能力都正常;第二次握手是服务端发送SYN+ACK,客户端接收,客户端得出客户端发送接收能力正常,服务端发送接收能力也都正常,但是此时服务器并不能确认客户端的接收能力是否正常;第三次握手客户端发送ACK,服务器接收,服务端才能得出客户端发送接收能力正常,服务端自己发送接收能力也都正常。

三次握手可以携带数据吗?

:第一次、第二次握手不可以携带数据,而第三次握手是可以携带数据的。假设第一次可以携带数据,如果有人恶意攻击服务器,每次都在第一次握手中的SYN报文放入大量数据,重复发送大量SYN报文,此时服务器会花费大量内存空间来缓冲这些报文,服务器就更容易被攻击了

tcp三次握手失败,服务端会如何处理?

:握手失败的原因有两种,第一种是服务端没有收到SYN,则什么都不做;第二种是服务端回复了SYN+ACK后,长时间没有收到ACK响应,则超时后就会发送RST重置连接报文,释放资源

ISN代表什么?意义何在?ISN是固定不变的吗?ISN为何要动态随机

ISN全称是Initial Sequence Number,是TCP发送方的字节数据编号的原点,告诉对方我要开始发送数据的初始化序列号。ISN如果是固定的,攻击者很容易猜出后序的确认号,为了安全起见,避免被第三方猜到从而发送伪造的RST报文,因此ISN是动态生成的

什么是半连接队列

:服务器第一次收到客户端的SYN之后,就会处于SYN_RECD状态,此时双方还没有完全建立连接。服务器会把这种状态下的请求连接放在一个队列里,我们把这种队列称之为半连接队列。当然还有一个全连接队列,就是已经完成三次握手,建立起来连接的就会放在全连接队列中,如果队列满了就有可能出现丢包现象

优雅回答四次挥手

四次挥手客户端主动调用close时,向服务端发送结束报文段FIN报,同时进入FIN_WAIT1状态;服务器会收到结束报文段FIN报,服务器返回确认报文段ACK并进入CLOSE_WAIT状态,此时如果服务端有数据要发送的话,客户端依然需要接收。客户端收到服务器对结束报文段的确认,就会进入到FIN_WAIT2状态,开始等待服务器的结束报文段;服务器端数据发送完毕后,当服务器真正调用close关闭连接时,会向客户端发送结束报文段FIN包,此时服务器进入LAST_ACK状态,等待最后一个ACK的带来;客户端收到服务器发来的结束报文段, 进入TIME_WAIT, 并发出送确认报文段ACK;服务器收到了对结束报文段确认的ACK,进入CLOSED状态,断开连接。而客户端要等待2MSL的时间,才会进入到CLOSED状态

在这里插入图片描述

为什么握手是三次,而挥手时需要四次呢?

:其实在TCP握手的时候,接收端将SYN包和ACK确认包合并到一个包中发送的,所以减少了一次包的发送。对于四次挥手,由于TCP是全双工通信,主动关闭方发送FIN请求不代表完全断开连接,只能表示主动关闭方不再发送数据了。而接收方可能还要发送数据,就不能立即关闭服务器端到客户端的数据通道,所以就不能将服务端的FIN包和对客户端的ACK包合并发送,只能先确认ACK,等服务器无需发送数据时在发送FIN包,所以四次挥手时需要四次数据包的交互

TIME_WAIT状态有什么作用,为什么主动关闭方没有直接进入CLOSED状态释放资源?

:如果主动关闭方进入CLOSED状态后,被动关闭方发送FIN包后没有得到ACK确认,超时后就会重传一个FIN包。如果客户端没有TIME_WAIT状态而直接进入CLOSED状态释放资源,下次启动新的客户端就可能使用了与之前客户端相同的地址信息,有两个危害,第一种是这个刚启动的新的客户端绑定地址成功时,就会收到了一个重传的FIN包,对新连接就会造成影响。第二种是如果该新客户端向相同的服务端发送SYN连接请求,但是此时服务端处于LAST_ACK状态,要求收到的是ACK而不是SYN,因此就会发送RST重新建立请求。

为什么TIME_WAIT状态需要经过2MSL才能进入CLOASE状态?

MSL指的是报文在网络中最大生存时间。在客户端发送对服务端的FIN确认包ACK后,这个ACK包有可能到达不了,服务器端如果接收不到ACK包就会重新发送FIN包。所以客户端发送ACK后需要留出2MSL时间(ACK到达服务器器+服务器发送FIN重传包,一来一回)等待确认服务器端缺失收到了ACK包。也就是说客户端如果等待2MSL时间也没收到服务器端重传的FIN包,则就可以确认服务器已经收到客户端发送的ACK包

一台主机上出现大量的TIME_WAIT是什么原因?应该如何处理?

:TIME_WAIT是主动关闭方出现的,一台主机出现大量的TIME_WAIT证明这台主机上发起大量的主动关闭连接。常见于一些爬虫服务器。这时候我们应该调整TIME_WAIT的等待时间,或者开启套接字地址重用选项

一台主机上出现大量的CLOSE_WAIT是什么原因?应该如何处理?

:CLOSE_WAIT是被动关闭方收到FIN请求进行回复之后的状态,等待上层程序进一步处理,若出现大量CLOSE_WAIT,有可能是被动关闭方主机程序中忘了最后一步断开连接后调用close释放资源。这是一个 BUG.,只需要加上对应的 close 即可解决问题

tcp连接管理中的保活机制

:tcp通信中,若两端长时间没有数据往来,则这时候每隔一段时间,服务端会向客户端发送一个保活探测数据报,要求客户端进行回复。若连续多次没有收到响应,就认为连接已经断开。长时间默认为7200s,每隔一段时间默认为75s,连续多次无响应默认为9次。这些数据都可以在套接字中修改,接口:Setsockopt

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请联系我们举报,一经查实,本站将立刻删除。

发布者:全栈程序员-站长,转载请注明出处:https://javaforall.net/186268.html原文链接:https://javaforall.net

(0)
全栈程序员-站长的头像全栈程序员-站长


相关推荐

  • PotPlayer下载与使用

    PotPlayer下载与使用下载安装说起来,Potplayer的下载其实并不轻松,它在国内是没有自己的官网;虽然你简单百度下,总能找到下载网站,但是并不能保证其安全和纯净,个人建议从这个官网下载:下载入口:Potplayer官网/公众号分享Potplayer的官网提供有64位和32位两种版本,我们只需要选择好适合自己系统类型的版本,点击下载;一般系统都是64位,如果还不知道的自己电脑系统类型,那么右键桌面“我的电脑”图标,选择“属性”,进入之后,即可查看;下载完成后,得到一个exe文件,双击打开;依次点击“下一步

    2022年7月12日
    34
  • linux下ls -l命令(即ll命令)查看文件的显示结果分析

    linux下ls -l命令(即ll命令)查看文件的显示结果分析在linux下使用“ls-l”或者“ls-al”或者“ll”命令查看文件及目录详情时,shell中会显示出好几列的信息。平时也没怎么注意过,今天忽然心血来潮想了解一下,于是整理了这篇博客,以供参考:首先给出一张典型的显示结果:下面对其中的每一列进行详细的分析:一、文件类型表示该文件的类型:“-”表示普通文件;“d”表示目录;“l”表示链接文件;“p”表示…

    2022年6月15日
    71
  • springboot+maven 项目 打jar包之后部署并启动方式「建议收藏」

    springboot+maven 项目 打jar包之后部署并启动方式「建议收藏」1、不管如何先clean下清掉之前的,命令:mvnclean。2、然后利用mvnpackage-DskipTests打出jar包。3、利用工具将jar包上传到linux服务器上面对应的位置。4、之前如果部署过的话先用命令ps-ef|grepjava看下进程,然后再利用kill-9把这个进程干掉。5、最后在利用命令nohupjava-jar…

    2022年6月19日
    37
  • 普林斯顿体系结构与计算机配件的关系研究_普林斯顿计算机博士

    普林斯顿体系结构与计算机配件的关系研究_普林斯顿计算机博士冯诺依曼、普林斯顿体系结构:输入输出设备不用说了吧。CPUCPU包括控制器和运算器。存储器这里的存储器实际上就是我们现在所说的内存。在学习单片机的时候,这个存储器可能是ROM,也可能是RAM,还可以扩展,但它一直都是半导体存储器件,属于直接与CPU交换数据的内存。下面的设备不在冯诺依曼体系结构图里硬盘而我们现在的硬盘则是磁性存储器件,它的读取速度比半导体存储器件要慢很多,并且它…

    2022年10月4日
    4
  • idea 2022.01.13激活码【中文破解版】2022.02.20

    (idea 2022.01.13激活码)这是一篇idea技术相关文章,由全栈君为大家提供,主要知识点是关于2021JetBrains全家桶永久激活码的内容IntelliJ2021最新激活注册码,破解教程可免费永久激活,亲测有效,下面是详细链接哦~https://javaforall.net/100143.htmlHCIQ56F36O-eyJsaWN…

    2022年4月1日
    71
  • 简单网络管理协议SNMP(史上最全)

    简单网络管理协议SNMP(史上最全)简单网络管理协议(SNMP)是TCP/IP协议簇的一个应用层协议。在1988年被制定,并被Internet体系结构委员会(IAB)采纳作为一个短期的网络管理解决方案;由于SNMP的简单性,在Internet时代得到了蓬勃的发展,1992年发布了SNMPv2版本,以增强SNMPv1的安全性和功能。现在,已经有了SNMPv3版本。SNMP版本…

    2022年10月17日
    2

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

关注全栈程序员社区公众号