u盘拒绝访问怎么解决win11_u盘无权限访问

u盘拒绝访问怎么解决win11_u盘无权限访问使用U盘启动盘安装系统时需要用到U盘,但是当我们将U盘插上电脑,结果出现拒绝访问的情形,别说是使用U盘启动盘重装系统了,连U盘基础的文件存储功能都无法使用。当U盘出现拒绝访问怎么解决呢?就此问题,下面小编分享u盘拒绝访问没有权限的原因和解决方法。U盘出现拒绝访问怎么解决1、U盘问题1)鼠标右键单击U盘盘符,在右键菜单中点击属性。2)在弹出的属性窗口中点击“工具”选项卡,再点击“开始检查”按钮,如下图所示:3)接着勾选“自动修复文件系统错误”和“扫描并尝试恢复坏扇区”并点击“开始”按钮(1)4)

大家好,又见面了,我是你们的朋友全栈君。如果您正在找激活码,请点击查看最新教程,关注关注公众号 “全栈程序员社区” 获取激活教程,可能之前旧版本教程已经失效.最新Idea2022.1教程亲测有效,一键激活。

Jetbrains全系列IDE稳定放心使用

使用U盘启动盘安装系统时需要用到U盘,但是当我们将U盘插上电脑,结果出现拒绝访问的情形,别说是使用U盘启动盘重装系统了,连U盘基础的文件存储功能都无法使用。当U盘出现拒绝访问怎么解决呢?就此问题,下面小编分享u盘拒绝访问没有权限的原因和解决方法。

U盘出现拒绝访问怎么解决

1、U盘问题

1)鼠标右键单击U盘盘符,在右键菜单中点击属性。

2)在弹出的属性窗口中点击“工具”选项卡,再点击“开始检查”按钮,如下图所示:

3)接着勾选“自动修复文件系统错误”和“扫描并尝试恢复坏扇区”并点击“开始”按钮

(1)

4)如果依然无效,请格式化U盘。

5)我们还可以在网络上找U盘修复工具对U盘进行修复。

2、权限问题

1)使用组合键(win键+r)打开运行窗口,并输入“gpedit.msc”再点击“确定”按钮;

2)在打开的本地组策略编辑器窗口,依次点击“计算机配置——管理模块——系统——可移动存储访问”并在右侧中找到“可移动磁盘:拒绝读取权限”和“所有可移动磁盘:拒绝读取权限”单击右键点击“编辑”选项;

(2)

3)接着在弹出的窗口中点击“已禁用”单选按钮,在点击“应用——确定”按钮。
内容来源:win7旗舰版

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请联系我们举报,一经查实,本站将立刻删除。

发布者:全栈程序员-站长,转载请注明出处:https://javaforall.net/187185.html原文链接:https://javaforall.net

(0)
全栈程序员-站长的头像全栈程序员-站长


相关推荐

  • Php控制台和phpinfo版本号不一致

    Php控制台和phpinfo版本号不一致

    2022年2月12日
    33
  • [Python图像处理] 十七.图像锐化与边缘检测之Roberts算子、Prewitt算子、Sobel算子和Laplacian算子

    [Python图像处理] 十七.图像锐化与边缘检测之Roberts算子、Prewitt算子、Sobel算子和Laplacian算子图像锐化和边缘提取技术可以消除图像中的噪声,提取图像信息中用来表征图像的一些变量,为图像识别提供基础。通常使用灰度差分法对图像的边缘、轮廓进行处理,将其凸显。本文分别采用Laplacian算子、Robert算子、Prewitt算子和Sobel算子进行图像锐化边缘处理实验。本文主要讲解灰度线性变换,基础性知识希望对您有所帮助。1.Roberts算子2.Prewitt算子3.Sobel算子4.Laplacian算子5.总结代码

    2022年10月29日
    0
  • java倒计时三种简单实现方式(java简单程序代码大全)

    下面是编程之家jb51.cc通过网络收集整理的代码片段。编程之家小编现在分享给大家,也给大家做个参考。importjava.util.Calendar;importjava.util.Date;importjava.util.Timer;importjava.util.TimerTask;importjavax.swing.JFrame;importjavax.swing.JLab…

    2022年4月18日
    46
  • Pytest(17)运行未提交的git(pytest-picked)

    Pytest(17)运行未提交的git(pytest-picked)前言我们每天写完自动化用例后都会提交到git仓库,随着用例的增多,为了保证仓库代码的干净,当有用例新增的时候,我们希望只运行新增的未提交git仓库的用例。pytest-picked插件可以

    2022年7月31日
    3
  • 中心频点计算公式_5G中的频点计算及实例分析[通俗易懂]

    中心频点计算公式_5G中的频点计算及实例分析[通俗易懂]什么是ARFCNARFCN,英文全称AbsoluteRadioFrequencyChannelNumber,即绝对无线频道编号,是指在GSM无线系统中用来鉴别特殊射频通道的编号方案。“ARFCN”一词源自于GSM技术,随着新技术的发展,延伸出其他类似术语,如UMTS/WCDMA的UARFCN,E-UTRAN/LTE的EARFCN,以及现在5G/NR的NR-ARFCN。计算公式:…

    2022年9月28日
    0
  • 最大公约数和最小公倍数的关系

    最大公约数和最小公倍数的关系联系:最大公约数:指两个或多个整数共有的约数中最大的那个最小公倍数:指两个或多个整数共有的倍数中最小的那个以两个整数为例:最大公约数表示为:(a,b)最小公倍数表示为:[a,b]定理:(a,b)X[a,b]=ab(a,b均为整数)例题:#include<stdio.h>intmain(){ intm,n,min=0,max=0; scanf(“%d%d”,&m,&n); //求最大公约数 for(inti

    2022年5月17日
    63

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

关注全栈程序员社区公众号