经典网络DenseNet介绍

经典网络DenseNet介绍经典网络DenseNet(DenseConvolutionalNetwork)由GaoHuang等人于2017年提出,论文名为:《DenselyConnectedConvolutionalNetworks》,论文见:https://arxiv.org/pdf/1608.06993.pdfDenseNet以前馈的方式(feed-forwardfashion)将每个层与其它层连接起来。在传统卷积神经网络中,对于L层的网络具有L个连接,而在DenseNet中,会有L(L+1)/2个连接。每一层的

大家好,又见面了,我是你们的朋友全栈君。如果您正在找激活码,请点击查看最新教程,关注关注公众号 “全栈程序员社区” 获取激活教程,可能之前旧版本教程已经失效.最新Idea2022.1教程亲测有效,一键激活。

Jetbrains全系列IDE稳定放心使用

经典网络DenseNet(Dense Convolutional Network)由Gao Huang等人于2017年提出,论文名为:《Densely Connected Convolutional Networks》,论文见:https://arxiv.org/pdf/1608.06993.pdf

DenseNet以前馈的方式(feed-forward fashion)将每个层与其它层连接起来。在传统卷积神经网络中,对于L层的网络具有L个连接,而在DenseNet中,会有L(L+1)/2个连接。每一层的输入来自前面所有层的输出。

DenseNet网络:

(1).减轻梯度消失(vanishing-gradient)。

(2).加强feature传递。

(3).鼓励特征重用(encourage feature reuse)。

(4).较少的参数数量。

Dense Block:像GoogLeNet网络由Inception模块组成、ResNet网络由残差块(Residual Building Block)组成一样,DenseNet网络由Dense Block组成,论文截图如下所示:每个层从前面的所有层获得额外的输入,并将自己的特征映射传递到后续的所有层,使用级联(Concatenation)方式,每一层都在接受来自前几层的”集体知识(collective knowledge)”。增长率(growth rate)k是每个层的额外通道数。

经典网络DenseNet介绍

Growth rate:如果每个H_{l}函数产生k个feature-maps,那么第l层产生k_{0}+k(l-1)个feature-maps。k_{0}是输入层的通道数。将超参数k称为网络的增长率。

DenseNet Basic Composition Layer:BatchNorm(BN)-ReLu-3*3 Conv

DenseNet-B(Bottleneck Layers):在BN-ReLu-3*3 Conv之前进行BN-ReLU-1*1 Conv操作,减少feature maps size。

Transition Layer(过渡层):采用1*1 Conv和2*2平均池化作为相邻Dense Block之间的转换层,减少feature map数和缩小feature map size,size指width*height。在相邻Dense Block中输出的feature map size是相同的,以便它们能够很容易的连接在一起。

DenseNet-BC:如果Dense Block包含m个feature-maps,则Transition Layer生成\theta m输出feature maps,其中0<\theta <1称为压缩因子。当\theta =1时,通过Transition Layers的feature-maps数保持不变。当\theta <1时,称为DenseNet-C,在实验中\theta =0.5。当同时使用Bottleneck和\theta <1的Transition Layers时,称为DenseNet-BC。

下图是一个DenseNet结构图,来自于论文:使用了3个Dense Blocks。DenseNet由多个Desne Block组成。每个Dense Block中的feature-map size相同。两个相邻Dense Block之间的层称为Transition Layers。通过卷积和池化来更改feature-map size。

经典网络DenseNet介绍

论文中给出了4种层数的DenseNet,论文截图如下所示:所有网络的增长率k是32,表示每个Dense Block中每层输出的feature map个数。

经典网络DenseNet介绍

DenseNet-121、DenseNet-169等中的数字121、169是如何计算出来的:以121为例,1个卷积(Convolution)+6个Dense Block*2个卷积(1*1、3*3)+1个Transition Layer(1*1 conv)+12个Dense Block*2个卷积(1*1、3*3)+ 1个Transition Layer(1*1 conv)+24个Dense Block*2个卷积(1*1、3*3)+ 1个Transition Layer(1*1 conv)+ 16个Dense Block*2个卷积(1*1、3*3)+最后的1个全连接层=121。这里的层仅指卷积层和全连接层,其它类型的层并没有计算在内

公式表示:其中H_{l}(\cdot )表示非线性转换函数

(1).传统的网络在l层的输出为:x_{l}=H_{l}(x_{l-1})

(2).ResNet在l层的输出为:x_{l}=H_{l}(x_{l-1})+x_{l-1}

(3).DenseNet在l层的输出为:x_{l}=H_{l}([x_{0},x_{1},\cdots ,x_{l-1}])

假如输入图像大小为n*n,过滤器(filter)为f*f,padding为p,步长(stride)为s,则输出大小为:计算卷积层大小,如果商不是整数,向下取整,即floor函数;计算池化层大小,如果商不是整数,向上取整,即ceil函数。参考:https://blog.csdn.net/fengbingchun/article/details/80262495

经典网络DenseNet介绍

https://github.com/fengbingchun/Caffe_Test/tree/master/test_data/Net/DenseNet 上整理了DenseNet prototxt文件。

这里描述下DenseNet-121架构:k=32,与上表中”DenseNet-121″有所差异

(1).输入层(Input):图像大小为224*224*3。

(2).卷积层Convolution+BatchNorm+Scale+ReLU:使用64个7*7的filter,stride为2,padding为3,输出为112*112*64,64个feature maps。

(3).Pooling:最大池化,filter为3*3,stride为2,padding为1,输出为57*57*64,64个feature maps。

(4).Dense Block1:输出为57*57*(64+32*6)=57*57*256,256个feature maps。

连续6个Dense Block,每个Dense Block包含2层卷积,卷积kernel大小依次为1*1、3*3,在卷积前进行BatchNorm+Scale+ReLU操作,第1、2个卷积输出feature maps分别为128、32。因为k=32,所以每个Dense Block输出feature maps数会比上一个Dense Block多32。每个Dense Block后做Concat操作。

(5).Transition Layer1:输出为29*29*128,128个feature maps。

A.BatchNorm+Scale+ReLU+1*1 conv,输出57*57*128。

B.平均池化,filter为2*2,stride为2,输出29*29*128。

(6).Dense Block2:输出为29*29*(128+32*12)=29*29*512,512个feature maps。

连续12个Dense Block,每个Dense Block包含2层卷积,卷积kernel大小依次为1*1、3*3,在卷积前进行BatchNorm+Scale+ReLU操作,第1、2个卷积输出feature maps分别为128、32。因为k=32,所以每个Dense Block输出feature maps数会比上一个Dense Block多32。每个Dense Block后做Concat操作。

(7).Transition Layer2:输出为15*15*256,256个feature maps。

A.BatchNorm+Scale+ReLU+1*1 conv,输出29*29*256。

B.平均池化,filter为2*2,stride为2,输出15*15*256。

(8).Dense Block3:输出为15*15*(256+32*24)=15*15*1024,1024个feature maps。

连续24个Dense Block,每个Dense Block包含2层卷积,卷积kernel大小依次为1*1、3*3,在卷积前进行BatchNorm+Scale+ReLU操作,第1、2个卷积输出feature maps分别为128、32。因为k=32,所以每个Dense Block输出feature maps数会比上一个Dense Block多32。每个Dense Block后做Concat操作。

(9).Transition Layer3:输出为8*8*512,512个feature maps。

A.BatchNorm+Scale+ReLU+1*1 conv,输出15*15*512。

B.平均池化,filter为2*2,stride为2,输出8*8*512。

(10).Dense Block4:输出为8*8*(512+32*16)=8*8*1024,1024个feature maps。

连续16个Dense Block,每个Dense Block包含2层卷积,卷积kernel大小依次为1*1、3*3,在卷积前进行BatchNorm+Scale+ReLU操作,第1、2个卷积输出feature maps分别为128、32。因为k=32,所以每个Dense Block输出feature maps数会比上一个Dense Block多32。每个Dense Block后做Concat操作。

(11).Classification Layer:

A.平均池化:filter为8*8,stride为1,padding为0,输出为1*1*1024,1024个feature maps。

B.卷积:kernel大小为1*1,输出1000个feature maps。

C.输出层(Softmax):输出分类结果,看它究竟是1000个可能类别中的哪一个。

可视化结果如下图所示:

经典网络DenseNet介绍

GitHubhttps://github.com/fengbingchun/NN_Test

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请联系我们举报,一经查实,本站将立刻删除。

发布者:全栈程序员-站长,转载请注明出处:https://javaforall.net/187810.html原文链接:https://javaforall.net

(0)
全栈程序员-站长的头像全栈程序员-站长


相关推荐

  • detour使用教程_devour怎么使用道具

    detour使用教程_devour怎么使用道具Detours的安装:下载部分:1.直接在百度搜"detour",进对应的网站下载。2.或以下链接https://www.microsoft.com/en-us/research/

    2022年8月5日
    23
  • 使用DataBaseMetaData得到表的主键

    使用DataBaseMetaData得到表的主键try{   Stringuser=”ahcwtest”;   Stringpassword=”ahcwtest”;   Stringdriver=”oracle.jdbc.driver.OracleDriver”;   Stringurl=”jdbc:oracle:thin:@192.168.71.17:1521:orcl”;   Stringsql=”SEL

    2022年6月20日
    23
  • jmeter并发测试步骤_jmeter怎么确定最大并发数

    jmeter并发测试步骤_jmeter怎么确定最大并发数第一种方案直接从数据库中获取账号和密码1、设置线程数为20,我们的并发用户量就是20个用户同时登录2、添加定时器3、设置集合点,当用户数量达到20个的时候再同时请求进行登录操作4、添加配置元件:JDBCConnectionConfiguration5、添加JDBCrequest请求(从数据库获取登录账号和密码)7、添加http登录请求8、查看结果第二种方案对登录账号和密码进行参数化1、添加设置线程数2、添加定时器

    2022年9月30日
    0
  • springboot和springframework以及jdk版本的对应关系

    springboot和springframework以及jdk版本的对应关系Springboot版本 SpringFramework jdk版本 maven版本 1.2.0版本之前 6 3.0 1.2.0 4.1.3+ 6 3.2+ 1.2.1 4.1.3+ 7 3.2+ 1.2.3 4.1.5+ 7 3.2+ 1.3.4 4.2.6+ 7 3.2+ 1.3.6 4.2.7+ 7 3.2+ 1.3.7 4.2.

    2022年5月16日
    258
  • 程序猿生存定律–交换是职场里一切的根本

    程序猿生存定律–交换是职场里一切的根本

    2021年11月13日
    33
  • IDEA怎么生成UML类图

    IDEA怎么生成UML类图最近在开发的过程当中,对于已有的代码,想将相关类绘制成UML类图,虽然现在有很多UML类图的优秀软件,比如ProcessOn(可视化编辑)、draw.io(可视化编辑)、PlantUML(代码生成),其实看到这里我就想IDEA中有没有像PlantUML一样的自动生成的插件,本着怀疑的态度百度了一下,果然IDEA还是很强大的,这个插件都是自带的,接下稍微讲述如何利用IDEA生成UML类图的教程。…

    2022年7月12日
    77

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

关注全栈程序员社区公众号