红黑树和平衡二叉树有什么区别?「建议收藏」

红黑树和平衡二叉树有什么区别?「建议收藏」什么是二叉树?二叉树(BinaryTree)是指每个节点最多只有两个分支的树结构,即不存在分支大于2的节点,二叉树的数据结构如下图所示这是一棵拥有6个节点深度为2(深度从0开始),并且根节点为3的二叉树二叉树有两个分支通常被称作“左子树”和“右子树”,而且这些分支具有左右次序不能随意地颠倒一棵空树或者满足以下性质的二叉树被称之为二叉查找树若任意节点的左子树不为空,则左子树上所有节点的值均小于它的根节点的值; 若任意节点的右子树不为空,则右子树上所有节点的值均大

大家好,又见面了,我是你们的朋友全栈君。如果您正在找激活码,请点击查看最新教程,关注关注公众号 “全栈程序员社区” 获取激活教程,可能之前旧版本教程已经失效.最新Idea2022.1教程亲测有效,一键激活。

Jetbrains全系列IDE稳定放心使用

什么是二叉树?

二叉树(Binary Tree)是指每个节点最多只有两个分支的树结构,即不存在分支大于 2 的节点,二叉树的数据结构如下图所示

红黑树和平衡二叉树有什么区别?「建议收藏」

这是一棵拥有 6 个节点深度为 2(深度从 0 开始),并且根节点为 3 的二叉树

二叉树有两个分支通常被称作“左子树”和“右子树”,而且这些分支具有左右次序不能随意地颠倒

一棵空树或者满足以下性质的二叉树被称之为二叉查找树

  • 若任意节点的左子树不为空,则左子树上所有节点的值均小于它的根节点的值;
  • 若任意节点的右子树不为空,则右子树上所有节点的值均大于或等于它的根节点的值;
  • 任意节点的左、右子树分别为二叉查找树

如下图所示,这就是一个标准的二叉查找树

红黑树和平衡二叉树有什么区别?「建议收藏」

二叉查找树(Binary Search Tree)也被称为二叉搜索树、有序二叉树(Ordered Binary Tree)或排序二叉树(Sorted Binary Tree)等

什么是红黑树?

红黑树(Red Black Tree)是一种自平衡二叉查找树,它最早被称之为“对称二叉 B 树”,它现在的名字源于 1978 年的一篇论文,之后便被称之为红黑树了

所谓的平衡树是指一种改进的二叉查找树,顾名思义平衡树就是将二叉查找树平衡均匀地分布,这样的好处就是可以减少二叉查找树的深度

一般情况下二叉查找树的查询复杂度取决于目标节点到树根的距离(即深度),当节点的深度普遍较大时,查询的平均复杂度就会上升,因此为了实现更高效的查询就有了平衡树

非平衡二叉树如下图所示

红黑树和平衡二叉树有什么区别?「建议收藏」

平衡二叉树如下图所示

红黑树和平衡二叉树有什么区别?「建议收藏」

可以看出使用平衡二叉树可以有效的减少二叉树的深度,从而提高了查询的效率

红黑树除了具备二叉查找树的基本特性之外,还具备以下特性

  • 节点是红色或黑色;
  • 根节点是黑色;
  • 所有叶子都是黑色的空节点(NIL 节点);
  • 每个红色节点必须有两个黑色的子节点,也就是说从每个叶子到根的所有路径上,不能有两个连续的红色节点;
  • 从一个节点到该节点的子孙节点的所有路径上包含相同数目的黑色节点

红黑树结构如下图所示

红黑树和平衡二叉树有什么区别?「建议收藏」

红黑树的优势

红黑树的优势在于它是一个平衡二叉查找树,对于普通的二叉查找树(非平衡二叉查找树)在极端情况下可能会退化为链表的结构,例如,当我们依次插入 3、4、5、6、7、8 这些数据时,二叉树会退化为如下链表结构

红黑树和平衡二叉树有什么区别?「建议收藏」

当二叉查找树退化为链表数据结构后,再进行元素的添加、删除以及查询时,它的时间复杂度就会退化为 O(n);而如果使用红黑树的话,它就会将以上数据转化为平衡二叉查找树,这样就可以更加高效的添加、删除以及查询数据了,这就是红黑树的优势

注意:红黑树的高度近似 log2n,它的添加、删除以及查询数据的时间复杂度为 O(logn)

在表示算法的执行时间时,通常会使用大 O 表示法,常见的标识类型有以下这些:

  • O(1):常量时间,计算时间与数据量大小没关系;
  • O(n):计算时间与数据量成线性正比关系;
  • O(logn):计算时间与数据量成对数关系;

自平衡的红黑树

红黑树能够实现自平衡和保持红黑树特征的主要手段是:变色、左旋和右旋

左旋指的是围绕某个节点向左旋转,也就是逆时针旋转某个节点,使得父节点被自己的右子节点所替代,如下图所示

红黑树和平衡二叉树有什么区别?「建议收藏」

在 TreeMap 源码中左旋的实现源码如下

// 源码基于 JDK 1.8
private void rotateLeft(Entry<K,V> p) {
    if (p != null) {
        // 右子节点
        Entry<K,V> r = p.right; 
        // p 节点的右子节点为 r 的左子节点
        p.right = r.left;
        // r 左子节点如果非空,r 左子节点的父节点设置为 p 节点
        if (r.left != null) 
            r.left.parent = p; 
        r.parent = p.parent; // r 父节点等于 p 父节点
        // p 父节点如果为空,那么讲根节点设置为 r 节点
        if (p.parent == null)
            root = r;
        // p 父节点的左子节点如果等于 p 节点,那么 p 父节点的左子节点设置 r 节点
        else if (p.parent.left == p)
            p.parent.left = r;
        else
            p.parent.right = r;
        r.left = p; 
        p.parent = r;
    }
}

左旋代码说明:在刚开始时,p 为父节点,r 为子节点,在左旋操作后,r 节点代替 p 节点的位置,p 节点成为 r 节点的左孩子,而 r 节点的左孩子成为 p 节点的右孩子

右旋指的是围绕某个节点向右旋转,也就是顺时针旋转某个节点,此时父节点会被自己的左子节点取代,如下图所示

红黑树和平衡二叉树有什么区别?「建议收藏」

在 TreeMap 源码中右旋的实现源码如下

private void rotateRight(Entry<K,V> p) {
    if (p != null) {
        Entry<K,V> l = p.left;
        // p 节点的左子节点为 l 的右子节点
        p.left = l.right;
        // l 节点的右子节点非空时,设置 l 的右子节点的父节点为 p
        if (l.right != null) l.right.parent = p;
        l.parent = p.parent;
        // p 节点的父节点为空时,根节点设置成 l 节点
        if (p.parent == null)
            root = l;
        // p 节点的父节点的右子节点等于 p 节点时,p 的父节点的右子节点设置为 l
        else if (p.parent.right == p)
            p.parent.right = l;
        else p.parent.left = l;
        l.right = p;
        p.parent = l;
    }
}

右旋代码说明:在刚开始时,p 为父节点 l 为子节点,在右旋操作后,l 节点代替 p 节点,p 节点成为 l 节点的右孩子,l 节点的右孩子成为 p 节点的左孩子

对于红黑树来说,如果当前节点的左、右子节点均为红色时,因为需要满足红黑树定义的第四条特征,所以需要执行变色操作,如下图所

红黑树和平衡二叉树有什么区别?「建议收藏」

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请联系我们举报,一经查实,本站将立刻删除。

发布者:全栈程序员-站长,转载请注明出处:https://javaforall.net/189485.html原文链接:https://javaforall.net

(0)
全栈程序员-站长的头像全栈程序员-站长


相关推荐

  • Java map集合深入学习

    Java map集合深入学习  概要:java.util中的集合类包含Java中某些最常用的类。最常用的集合类是List和Map。Map提供了一个更通用的元素存储方法。Map集合类用于存储元素对(称作“键”和“值”),其中每个键映射到一个值。本文主要介绍javamap的初始化、用法、map的四种常用的遍历方式、map的排序以及常用api。目录1Map用法类型介绍类型区别…

    2022年5月29日
    43
  • 总结Redis Cluster原理+基本使用+运维注意事项「建议收藏」

    目录一、RedisCluster数据分布理论选择(一)数据分布关注点(二)三种数据分布方案的对比1.节点取余分区方案2.一致性哈希分区方案3.虚拟槽分区方案(RedisCluster采用此方案)二、RedisCluster节点通信概述(一)Gossip消息(二)消息格式分析(三)消息处理流程(四)节点选择(五)通信流程总述三、搭建集群与简单…

    2022年4月14日
    38
  • abaqus6.14.4安装_abaqus激活成功教程教程

    abaqus6.14.4安装_abaqus激活成功教程教程密码zo32

    2022年9月10日
    0
  • MySQL 改动用户password及重置rootpassword「建议收藏」

    MySQL 改动用户password及重置rootpassword

    2022年1月18日
    48
  • 漏洞挖掘丨客户支持聊天系统中的IDOR漏洞

    漏洞挖掘丨客户支持聊天系统中的IDOR漏洞*本文中涉及到的相关漏洞已报送厂商并得到修复,本文仅限技术研究与讨论,严禁用于非法用途,否则产生的一切后果自行承担。2019-04-17_165229.jpg大家好,今天分享的writeup是一个关于客户支持系统(CustomerSupport)的IDOR漏洞(不安全的直接对象引用),该漏洞可以导致目标系统的访问控制功能失效,实现客户支持平台内的任意消息读取和发送,还能下载任意用户的相关文件。…

    2022年6月11日
    33
  • Win10 桌面美化[通俗易懂]

    Win10 桌面美化[通俗易懂]Win10桌面美化最近发现了几款Win10界面美化的软件,看了看别人家的Win10操作界面,瞬间觉得自己的low了,关键是赏心悦目啊!废话不多说,先看看我原来桌面和美化后的桌面对比图原始桌面美化桌面1.安装RocketDockRocketDock可以提供类似macos的操作系统图标特效,打开安装包进行安装,完毕后启动得到效果如下:可以发现切换效果与mac类似,他默认的主题是C…

    2022年4月25日
    49

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

关注全栈程序员社区公众号