STM32驱动OV7725摄像头颜色识别「建议收藏」

STM32驱动OV7725摄像头颜色识别「建议收藏」实验目的:使用stm32驱动OV7725摄像头进行图像实时采集,在tft屏幕上实时显示并识别图像中的特定颜色,在颜色的周围画上框。实验现象:我的工程代码链接:http://download.csdn.net/my程序移植自阿莫论坛某位大神的程序。链接:http://www.amobbs.com/thread-5499408-1-1.html?_dsign=85056954实现原理:

大家好,又见面了,我是你们的朋友全栈君。如果您正在找激活码,请点击查看最新教程,关注关注公众号 “全栈程序员社区” 获取激活教程,可能之前旧版本教程已经失效.最新Idea2022.1教程亲测有效,一键激活。

Jetbrains全系列IDE稳定放心使用

转载请注明出处:http://blog.csdn.net/hongbin_xuhttp://hongbin96.com/
文章链接:http://blog.csdn.net/hongbin_xu/article/details/54911339http://hongbin96.com/109

实验目的:
使用stm32驱动OV7725摄像头进行图像实时采集,在tft屏幕上实时显示并识别图像中的特定颜色,在颜色的周围画上框。

实验现象:
这里写图片描述

我的工程代码链接:
http://download.csdn.net/detail/hongbin_xu/9749105

程序移植自阿莫论坛某位大神的程序。
链接:http://www.amobbs.com/thread-5499408-1-1.html?_dsign=85056954

实现原理:
将摄像头的数据读出写入tft屏,读取tft屏幕上的像素点的颜色进行识别。由于RGB格式的颜色数据的效果不好,所以将其转换为HSL格式数据。首先遍历寻找腐蚀中心,然后在之前腐蚀中心点处进行迭代向外寻找新的腐蚀中心。腐蚀算法从该点开始分别向上下左右四个方向进行读点,若点的颜色符合条件则往外读,等四个方向都结束后得到四个边缘点的坐标,记左边缘点的x轴坐标为left,右边缘点的x轴坐标为right,上边缘点的y轴坐标为up,下边缘点的y轴坐标为bottom,那么坐标( (right-left)/2 , (up-bottom)/2 ) 即为新的腐蚀中心。

关于程序中使用到的参数值,我是参照下面这些该大神在论坛说的调试经验得到的参数:
设置好H、S、L的阈值,用起来没有问题。分享一下我的调节参数时总结的技巧:
1.识别绿色和蓝色的效果最好,因为他们在色调谱中占据的范围最大
2.先将S、L的范围设的广一些(如 5 -250 ),先调节H的值的范围
3.H值调节好后,再调节S、L值

这里介绍下一些相关概念:
HSL:(摘自百度百科)
这里写图片描述

这里写图片描述

HSL的H(hue)分量,代表的是人眼所能感知的颜色范围,这些颜色分布在一个平面的色相环上,取值范围是0°到360°的圆心角,每个角度可以代表一种颜色。基本参照:360°/0°红、60°黄、120°绿、180°青、240°蓝、300°洋红,它们在色相环上按照60°圆心角的间隔排列。
HSL的S(saturation)分量,指的是色彩的饱和度,它用0%至100%的值描述了相同色相、明度下色彩纯度的变化。数值越大,颜色中的灰色越少,颜色越鲜艳,呈现一种从理性(灰度)到感性(纯色)的变化。
HSL的L(lightness)分量,指的是色彩的明度,作用是控制色彩的明暗变化。它同样使用了0%至100%的取值范围。数值越小,色彩越暗,越接近于黑色;数值越大,色彩越亮,越接近于白色。

HSL与RGB之间的计算:
从RGB推算HSL:
R、G、B的数值定在【0,255】
亮度L只依赖于R、G、B的最大值和最小值。若令M、N分别是R、G、B的最大值和最小值,则有:若M=0(N=0),即R、G、B均为0时,L=0;否则,亮度L为
其中。由公式可知,L的取值范围在0到240之间。
对于饱和度S:当M或N改变时S随之改变;否则,S不变。即S与L的情况类似,只与最大和最小值有关,换句话说与L有关。所以可以得到S与L之间的数学关系:
当M=N=0或者M=N=255时,没有意义;l=0时,s=0;
当(M+N)>256时,S为:S=240(M-N)/(512-M-N);当l>120时,s = (M-N)* 240 / ( 480 – ( M+ N) );
当(M+N)<256时,S为:S=240(M-N)/(M+N);当l<=120时,s = (M-N)* 240 / ( M+ N);
同理,色相H也是只与最大值和最小值有关。
当M=N时,H无定义;
当最大值为红色,最小值为蓝色,即M=R、N=B,H介于0到40之间,有:
H=40(G-N)/(M-N);
当最大值为红色,最小值为绿色,即M=R、N=G,H介于200到240之间,有:
H=240+40(G-B)/(M-N);
当最大值为绿色,最小值为红色,即M=G、N=R,H介于80到120之间;
当最大值为绿色,最小值为蓝色,即M=G、N=B,H介于40到80之间;
h = 40 * ( B – R ) / (M-N)+ 80;
当最大值为蓝色,最小值为红色,即M=B、N=R,H介于120到160之间;
当最大值为蓝色,最小值为绿色,即M=B、N=G,H介于160到200之间;
h = 40 * ( R – G ) / (M-N)+ 160;

从HSL反算RGB:
当H无定义时,表示R、G、B三者相等,因策,他们的值可以直接由下面公式求得:
当L=0时,R=G=B=0;
当L!=0时,R=G=B=(17L-8)/16;
当H有定义时,令SUM为M与N之和,由上面的公式可知,若L=0,则SUM=0,否则SUM=(17L-8)*2/16。
若SUM<256,则最大值M为:M=SUM/2+SUM*S/480;
若SUM<=256,则最大值M为:M=SUM/2+(512-SUM)*S/480;
求出最大值后,可以求出最小值N=SUM-M。
下面分六种情况求出R、G、B的值:
令L为H/40的整数部分:
若L=0,则:
R=M
B=N
G=B+H *(R-B)/40
若L=1,则:
G=M
B=N
R=G+(G-B)(H-40)/40
若L=2,则:
G=M
R=N
B=R+(G-R)(H-80)/40
若L=3,则:
B=M
R=N
G=B+(B-R)(H-120)/40
若L=4,则:
G=N
B=M
R=G+(B-G)(H-160)/40
若L=5,则:
R=M
G=N
B=R +(R-G)(H-200)/40
至此RGB的反算就完成了。

如果想要更快捷地将HSL转换成RGB格式,可以使用下面的工具:
网络工具链接:
HSL取色器
链接: http://hslpicker.com/#f9aee5,0.82
RGB、HEX、HSL等颜色形式相互转换工具
链接: http://tools.jb51.net/color/rgb_hex_hsl

推荐使用windos自带的绘图工具软件中,点“颜色”->”编辑颜色”->”规定自定义颜色” 进入调色板进行调色。
这里写图片描述

具体代码请参考我上传的工程代码。

参考链接:
杨朝霞,逯峰,图像处理中RGB与HLS之间的转换,http://www.doc88.com/p-9991476681520.html

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请联系我们举报,一经查实,本站将立刻删除。

发布者:全栈程序员-站长,转载请注明出处:https://javaforall.net/190393.html原文链接:https://javaforall.net

(0)
全栈程序员-站长的头像全栈程序员-站长


相关推荐

  • POE设计实战_python异步执行

    POE设计实战_python异步执行二、异步FIFO(1)FIFO基本概念(2)异步FIFO基本概念(3)异步FIFO的作用(4)异步FIFO的读/写指针(5)异步FIFO空/满标志(6)指针计数器的选择(7)二进制与格雷码相互转换三、Spec(1)Functiondescripton(2)Featurelist(3)BlockDiagram(4)Interfacedescription……………

    2025年8月14日
    4
  • tf.placeholder() is not compatible with eager execution的解决方法「建议收藏」

    tf.placeholder() is not compatible with eager execution的解决方法「建议收藏」最近安装了TensoFlow2.0及以上的版本都发现啊出现这个问题:RuntimeError:tf.placeholder()isnotcompatiblewitheagerexecution.这是因为在运行**tf.compat.v1.placeholder(dtype,shape=None,name=None)**的时候急切执行了这条语句,但是我们一般都是在一…

    2022年7月13日
    12
  • 基于spss的聚类分析(Cluster analysis)「建议收藏」

    基于spss的聚类分析(Cluster analysis)「建议收藏」聚类分析是统计学中研究这种“物以类聚”问题的一种有效方法,它属于统计分析的范畴。聚类分析的实质是建立一种分类方法,它能够将一批样本数据按照他们在性质上的亲密程度在没有先验知识的情况下自动进行分类。这里所说的类就是一个具有相似性的个体的集合,不同类之间具有明显的区别。定义:聚类分析是一种探索性的分析,在分类的过程中,人们不必事先给出一个分类的标准,聚类分析能够从样本数据出发,自动进行分类。聚类分析所使用方法的不同,常常会得到不同的结论。不同研究者对于同一组数据进行聚类分析,所得到的聚类数.

    2022年10月17日
    4
  • PHP如何解决网站大流量与高并发的问题(四)「建议收藏」

    PHP如何解决网站大流量与高并发的问题(四)

    2022年2月9日
    44
  • kalman滤波融合原理及其matlab仿真「建议收藏」

    kalman滤波融合原理及其matlab仿真「建议收藏」1、kalman原理卡尔曼滤波是一种递推式滤波方法,不须保存过去的历史信息,新数据结合前一刻已求得的估计值及系统本身的状态方程按一定方式求得新的估计值。1.1、线性卡尔曼假设线性系统状态是k,卡尔曼原理可用以下五个公式表达:X(k|k-1)=AX(k-1|k-1)+BU(k)………..(1)P(k|k-1)=AP(k-1|k-1)A’+Q…………

    2022年5月28日
    49
  • laravel 远程一对多实例

    laravel 远程一对多实例

    2021年11月9日
    44

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

关注全栈程序员社区公众号