bp神经网络的设计方法_bp神经网络例子

bp神经网络的设计方法_bp神经网络例子基于BP神经网络的室内声源定位算法的实现(附有程序)问题描述现在有一个安静的房子,有一个人在房间里走动,我要利用屋里的麦克风接收这个人的脚步声,然后对这个人进行定位。问题的意义声源定位,这个问题的研究意义重大,它能克服视觉定位的缺点(即只能对看得到的地方进行定位)。问题的研究方法本文只讨论基于麦克风阵列的声源定位(即利用麦克风收集声源信息)。目前解决这个问题的主流方法有三个,分别是基于最大输出功率的可控波束形成技术、基于高分辨率谱估计技术、基于声达时间差的定位技术。这三种方法都是通过研究声音的

大家好,又见面了,我是你们的朋友全栈君。如果您正在找激活码,请点击查看最新教程,关注关注公众号 “全栈程序员社区” 获取激活教程,可能之前旧版本教程已经失效.最新Idea2022.1教程亲测有效,一键激活。

Jetbrains全系列IDE使用 1年只要46元 售后保障 童叟无欺

基于BP神经网络的室内声源定位算法的实现(附有程序)

  • 问题描述
    现在有一个安静的房子,有一个人在房间里走动,我要利用屋里的麦克风接收这个人的脚步声,然后对这个人进行定位。
  • 研究的意义
    声源定位可以克服视觉定位的缺点,对看不见的地方也可以定位,在机器人追踪与探测方面得到了很好的应用。室内声源定位被广泛应用于视频会议、智能家居、车载通话设备等场景中。特别是在人工智能时代,结合机器学习和深度学习,室内声源定位问题的应用价值变得非常大。
  • 问题的研究方法
    目前解决这个问题的主流方法有三个,分别是基于最大输出功率的可控波束形成技术、基于高分辨率谱估计技术、基于声达时间差的定位技术。这三种方法都是通过研究声音的物理性质,建立相应的方程,然后进行求解,过程复杂,求解难度高。
    基于上述原因,本文从人工智能的角度考虑,我们把声音在室内空间的混乱场当成一个黑匣子,只分析输入输出的数据特征,从而找到普遍的规律,达到解决问题的目的。本文利用的人工智能算法是BP神经网络算法,下面将按照正常人的逻辑思维顺序,一步一步介绍算法的实现。
  • 摘要
    本文设计了离线采样方案,构建了隐含层为7个神经元的网络结构,利用 LevenBerg-Marquardt的BP算法作为训练函数,编写了matlab程序用模拟定位,实现了在100平方米的房子里,只需要采样100组数据进行机器训练,就可以将定位误差控制在几厘米的效果。
  • 模型的建立
    (1)离线采样方案
    在建立神经网络之前,我们要先设计出采样模型,分别得到输入数据和输出数据的形式,才能具体的设计神经网络,因此,下面先设计采样模型,再设计网络模型。
    在这里插入图片描述
    如上图所示,我先对将地面划分为n个小区域,用发声装置分别在每一个小区域的中心点坐标处发声一次,每发声一次,就用四个麦克风记录下时间差,,只需要三个时间差即可,分别为
    在这里插入图片描述
    这样,我们能得到n组数据,第i组数据如下所示:
    在这里插入图片描述
    其中x_i,y_i分别代表地面横坐标值和纵坐标值。这n组数据就可以作为BP神经网络的训练数据,离线采样操作就完成了。
    (2)BP神经网络的构建
    离线采样之后,我们就可以构建BP神经网络了。因为输入数据是三个分量,输出数据是两个分量,所以构建的BP神经网络的输入层与输出层分别是三个单位和两个单位。通过不断测试,我得出当隐含层含有7个神经元时,预测结果最佳。网络结构如下图所示。
    在这里插入图片描述
    构建了神经网络的结构,接下来我们要确定的是使用什么激活函数,训练算法和性能函数。在一般情况下,隐含层都是用S形激活函数,输出层都是用线性激活函数,此处的用法也是如此。由于用梯度下降法训练函数构建的网络速度比较慢,而基于LevenBerg-Marquardt算法的训练网络的速度非常快,所以我们使用LevenBerg-Marquardt的BP算法训练函数。由于我们要考虑的是网络的整体性能,所以我们使用的性能函数是均方误差函数。
  • 数值模拟训练和定位测试
    不妨假设房子是个标准的长方体,它的长、宽、高分别为10米、10米、5米,四个麦克风在空间中构成一个四面体,假设四个麦克风在空间的坐标分别为A(4.9,4.9,1.0)、B(4.9,5.1,1.0)、C(5.1,5.1,1.0),D(5.0,5.0,2.0)。地面面积为100平方米,取每一个小区域面积为1平方米,则可得到100组训练数据。将这100组训练数据用BP神经网络算法进行机器学习之后,下面就可以用BP神经网络进行定位测试了。
    接下来我们就可以想一下怎么进行定位测试了,首先,我们将声源随机放置在房间中,即用计算机模拟一个的随机位置坐标,然后根据声音的传播速度,可以求出各个麦克风首次接受到声音的时间差,将这组时间差作为定位测试的输入数据,用已经训练好的BP神经网络进行预测,得到预测值,然后再分析预测位置与真实位置的误差。
    在100平方米的房间里,我们只用了100组训练数据,重复10次定位操作,得到的预测位置与实际位置的关系如下表所示。
    测试次数 声源的实际位置 BP神经网络的预测位置
    在这里插入图片描述
    误差分析如下图所示。
    在这里插入图片描述
    机器训练的结果分析如下图所示。
    在这里插入图片描述
    可以看出,用BP神经网络算法对100平方米的室内进行声源定位,只需要采集100组训练数据,就可以使预测位置与实际位置的误差只有几厘米。从机器训练的结果可以看出,整个定位过程所用时间非常短,收敛速非常快,均方误差已经达到了4×10^(-6)米。
  • matlab程序代码
%% 清空环境变量
clc
clear
%% 生成训练数据与预测数据
%%%训练数据
A=[4.9,4.9,1];%%%麦克风A的坐标
B=[4.9,5.1,1];%%%麦克风B的坐标
C=[5.1,5.1,1];%%%麦克风C的坐标
D=[5.0,5.0,2];%%%麦克风D的坐标
%x=0.5:1:9.5;y=0.5:1:9.5;%%%用100组数据训练
x=0.5:0.5:10;y=0.5:0.5:10;%%%用400组数据训练
[X,Y]=meshgrid(x,y);
tAB=(sqrt((A(1)-X).^2+(A(2)-Y).^2+A(3).^2)-sqrt((B(1)-X).^2+(B(2)-Y).^2+B(3).^2)); %%%声源到A,B两个麦克风的时间差,下同
tBC=(sqrt((B(1)-X).^2+(B(2)-Y).^2+B(3).^2)-sqrt((C(1)-X).^2+(C(2)-Y).^2+C(3).^2));
tCD=(sqrt((C(1)-X).^2+(C(2)-Y).^2+C(3).^2)-sqrt((D(1)-X).^2+(D(2)-Y).^2+D(3).^2));
ttAB=tAB(:)';
ttBC=tBC(:)';
ttCD=tCD(:)';
input_train=[ttAB;ttBC;ttCD];%%%训练数据的输入值(是麦克风接受声音的时间差)
XX=X(:)';
YY=Y(:)';
output_train=[XX;YY];%%%训练数据的输出值(是位置坐标)
%%%预测数据
m=10;   %%%预测m个位置(就是分别将声源放到m个位置,用BP神经网络算法预测,然后对比预测结果和实际结果)
X=rand(1,m)*10;
Y=rand(1,m)*10;
tAB=(sqrt((A(1)-X).^2+(A(2)-Y).^2+A(3).^2)-sqrt((B(1)-X).^2+(B(2)-Y).^2+B(3).^2));
tBC=(sqrt((B(1)-X).^2+(B(2)-Y).^2+B(3).^2)-sqrt((C(1)-X).^2+(C(2)-Y).^2+C(3).^2));
tCD=(sqrt((C(1)-X).^2+(C(2)-Y).^2+C(3).^2)-sqrt((D(1)-X).^2+(D(2)-Y).^2+D(3).^2));
input_test=[tAB;tBC;tCD];%%%预测数据的输入值(是麦克风接受声音的时间差)
real_locate=[X;Y];%%%真实的声源坐标,用于检验预测值是否正确
%% 数据归一化
[inputn,inputps]=mapminmax(input_train);  %%%其中inputps是用于记录数据归一化方法
[outputn,outputps]=mapminmax(output_train);   %%%outputps同理
%% BP网络训练
% %初始化网络结构
net=newff(inputn,outputn,7);%%%建立一个由7个神经元组成的隐藏层构成了一个网络,这是新版matlab的用法
net.trainParam.epochs=5000;%%%最大迭代次数
net.trainParam.lr=0.1;%%%学习率
net.trainParam.goal=0.000004;%%%目标误差
net.trainParam.max_fail=10000;
%网络训练
net=train(net,inputn,outputn);
%% BP网络预测
%预测数据归一化
inputn_test=mapminmax('apply',input_test,inputps);%%%对测试数据再进行数据归一化,之前是对训练数据进行数据归一化,而且归一化方式和前面的一样
 
%网络预测输出
an=sim(net,inputn_test);   %训练输出的结果
 
%网络输出反归一化
BPoutput=mapminmax('reverse',an,outputps);%%反归一化得到实际结果
%% 结果分析
for i=1:m
fprintf('第%d 次测试的实际位置是:(%d,%d)',i,real_locate(:,i));fprintf('\n');
fprintf('BP神经网络预测位置是:(%d,%d)',BPoutput(:,i));fprintf('\n');
end
%%%画图
plot(real_locate(1,:),real_locate(2,:),'*')
hold on
plot(BPoutput(1,:),BPoutput(2,:),'o')
legend('实际位置','预测位置')
title('BP网络预测输出','fontsize',12)
ylabel('Y方向','fontsize',12)
xlabel('X方向','fontsize',12)
%%%误差分析(预测位置的分量与实际位置的分量做差取绝对值再相加)
figure(2)
r=real_locate-BPoutput;
r=abs(r(1,:))+abs(r(2,:));
plot(r,'-*')
title('BP网络预测误差','fontsize',12)
legend('误差')
ylabel('误差(单位/米)','fontsize',12)
xlabel('位置','fontsize',12)

本来想给你上传程序文件的,但是我还不会怎么上传了程序文件,所以等我之后上传了再来这里给链接吧。

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请联系我们举报,一经查实,本站将立刻删除。

发布者:全栈程序员-站长,转载请注明出处:https://javaforall.net/190636.html原文链接:https://javaforall.net

(0)
全栈程序员-站长的头像全栈程序员-站长


相关推荐

  • 无锁编程 汇总

    无锁编程 汇总无锁编程主要是通过一系列原子操作实现。原子操作:1.  Read-Modify-Write(RMW)操作Win32上的_InterlockedIncrementandInterlockedDecrement,iOS上的OSAtomicAdd32以及C++11中的std::atomic::fetch_add。需要注意的是,C++11的原子标准不保证其在每个平台上的实现都是无

    2022年5月31日
    35
  • springmvc源码下载_idea jar包导入

    springmvc源码下载_idea jar包导入1.首先需要下载源码码云地址:https://gitee.com/mirrors/Spring-Framework.git很快推荐GitHub地址:https://github.com/spring-projects/spring-framework.git不推荐然后打开idea,下载源码2.下载并配置gradle环境下载地址:https://services…

    2022年8月12日
    28
  • 数据库原理——事务、视图、存储过程

    数据库原理——事务、视图、存储过程

    2021年5月20日
    146
  • 数据库sql嵌套查询题_sql子查询嵌套优化

    数据库sql嵌套查询题_sql子查询嵌套优化一、嵌套查询概念在sql语言中,一个select-from-where语句成为一个查询块,将一个查询块嵌套在另一个查询块的where子句或having短语的条件中的查询成为嵌套查询。外层的查询块称为外层查询或父查询,内层的查询称为内层查询或子查询。注意点:子查询的select语句不能使用orderby子句,orderby只能对最终查询结果排序。嵌套查询分类:1、相关子查询/关联子查询:子查询的查询条件依赖于父查询,比如,如果子查询需要执行多次,即采用循环的方式,先从外部查询开始,每

    2022年8月10日
    3
  • CSDN有哪些值得学习的专栏?

    CSDN有哪些值得学习的专栏?马上2020年了,回顾2019这一年,CSDN哪些专栏受到了大家的喜爱呢?我们结合专栏的关注量、浏览量、用户反馈等多个方面,精选出一些专栏,分期分类推荐给你!涉及各类领域,带你从入门进阶实战!目录一、Java二、Python新三、C/C++四、AI五、OpenCV六、SpringBoot七、GO新八、其他新一、Java1、Java程序…

    2022年9月1日
    0
  • redis通过6379端口无法连接服务器

    redis通过6379端口无法连接服务器看了网上很多解决方案,都是端口问题,将127.0.0.1改为0.0.0.0,就ok了,但是本人的问题不是端口问题,端口本来就是0.0.0.0。其实redis无法连接数据库就只有这几种可能,防火墙,安全组,密码,绑定IP。这次的问题感觉还是比较让人费解的,当更换端口号的时候就可以,默认端口6379就是不行。按照顺序依次检查了防火墙,安全组,密码,配置文件,都确认没有问题之后,再次启动redis,…

    2022年6月7日
    29

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

关注全栈程序员社区公众号