python实现交叉验证_kfold显示不可迭代

python实现交叉验证_kfold显示不可迭代KFold模块fromsklearn.model_selectionimportKFold为什么要使用交叉验证?交叉验证的介绍交叉验证是在机器学习建立模型和验证模型参数时常用的办法。交叉验证,顾名思义,就是重复的使用数据,把得到的样本数据进行切分,组合为不同的训练集和测试集,用训练集来训练模型,用测试集来评估模型预测的好坏。在此基础上可以得到多组不同的训练集和测试集,某次训练集中的某样本在…

大家好,又见面了,我是你们的朋友全栈君。如果您正在找激活码,请点击查看最新教程,关注关注公众号 “全栈程序员社区” 获取激活教程,可能之前旧版本教程已经失效.最新Idea2022.1教程亲测有效,一键激活。

Jetbrains全系列IDE使用 1年只要46元 售后保障 童叟无欺

KFold模块

from sklearn.model_selection import KFold

为什么要使用交叉验证?交叉验证的介绍

交叉验证是在机器学习建立模型和验证模型参数时常用的办法。 交叉验证,顾名思义,就是重复的使用数据,把得到的样本数据进行切分,组合为不同的训练集和测试集,用训练集来训练模型,用测试集来评估模型预测的好坏。在此基础上可以得到多组不同的训练集和测试集,某次训练集中的某样本在下次可能成为测试集中的样本,即所谓“交叉”。

那么什么时候才需要交叉验证呢?交叉验证用在数据不是很充足的时候。它的基本想法就是重复地使用数据:把给定的数据进行切分,将切分的数据集组合为训练集和测试集,在此基础上反复地进行训练、测试以及模型选择。 比如在我日常项目里面,对于普通适中问题,如果数据样本量小于一万条,我们就会采用交叉验证来训练优化选择模型。如果样本大于一万条的话,我们一般随机的把数据分成三份,一份为训练集(Training Set),一份为验证集(Validation Set),最后一份为测试集(Test Set)。用训练集来训练模型,用验证集来评估模型预测的好坏和选择模型及其对应的参数。把最终得到的模型再用于测试集,最终决定使用哪个模型以及对应参数。

交叉验证的目的是为了能有效地估计模型的泛化能力 (测试误差),从而进行模型选择。 评估模型,然后通过的出来的准确率,我们再进行模型选择。

K折交叉验证原理

这便是交叉验证的过程:

1、首先随机地将数据集切分为 k 个互不相交的大小相同的子集;

2、然后将 k-1 个子集当成训练集训练模型,剩下的 (held out) 一个子集当测试集测试模型;

3、将上一步对可能的 k 种选择重复进行 (每次挑一个不同的子集做测试集);

4、在每个训练集上训练后得到一个模型,用这个模型在相应的测试集上测试,计算并保存模型的评估指标,

5、这样就训练了 k 个模型,每个模型都在相应的测试集上计算测试误差,得到了 k 个测试误差。

对这 k 次的测试误差取平均便得到一个交叉验证误差,并作为当前 k 折交叉验证下模型的性能指标。

在模型选择时,假设模型有许多可以调整的参数可供调参,一组可以调整的参数便确定一个模型,计算其交叉验证误差,最后选择使得交叉验证误差最小的那一组的调整参数。这便是模型选择过程。

简而言之,就是我们通过交叉验证验证不同的模型,或者不同的参数组合,最终我们选择准确度高的作为我们的模型。

k 一般大于等于2,实际操作时一般从3开始取,只有在原始数据集样本数量小的时候才会尝试取2。

k折交叉验证可以有效的避免过拟合以及欠拟合状态的发生,最后得到的结果也比较具有说服性。

k折交叉验证最大的优点:

所有数据都会参与到训练和预测中,有效避免过拟合,充分体现了交叉的思想

交叉验证可能存在 bias 或者 variance。如果我们提高切分的数量 k,variance 会上升但 bias 可能会下降。相反得,如果降低 k,bias 可能会上升但 variance 会下降。bias-variance tradeoff 是一个有趣的问题,我们希望模型的 bias 和 variance 都很低,但有时候做不到,只好权衡利弊,选取他们二者的平衡点。

通常使用10折交叉验证,当然这也取决于训练数据的样本数量。

当我们的数据集小时,我们的数据无法满足模型的复杂度就会过拟合,使用交叉验证我们可以重复地使用数据:把给定的数据进行切分,将切分的数据集组合为训练集和测试集,在此基础上反复地进行训练、测试以及模型选择。相当于我们增加了我们的数据量(防止过拟合)。最后得到我们模型的准确率(性能)。

pipeline的流程案例-代码解释:

from sklearn.preprocessing import StandardScaler

from sklearn.decomposition import PCA

from sklearn.linear_model import LogisticRegression

from sklearn.pipeline import Pipeline

pipe_lr = Pipeline([(‘sc’, StandardScaler()),

(‘pca’, PCA(n_components=2)),

(‘clf’, LogisticRegression(random_state=1))

])

pipe_lr.fit(X_train, y_train)

print(‘Test accuracy: %.3f’ % pipe_lr.score(X_test, y_test))

Pipeline执行流程的分析

pipeline 的中间过程由scikit-learn相适配的转换器(transformer)构成,最后一步是一个estimator。

比如上述的代码,StandardScaler和PCA transformer 构成intermediate steps,LogisticRegression 作为最终的estimator。

当我们执行 pipe_lr.fit(X_train, y_train)时,首先由StandardScaler在训练集上执行 fit和transform方法,transformed后的数据又被传递给Pipeline对象的下一步,也即PCA()。和StandardScaler一样,PCA也是执行fit和transform方法,最终将转换后的数据传递给 LosigsticRegression。

from sklearn.ensemble import RandomForestClassifier

from sklearn.model_selection import GridSearchCV

from sklearn.datasets import load_iris

from sklearn.pipeline import Pipeline

from sklearn.preprocessing import StandardScaler

# 创建随机森林模型

rf=RandomForestClassifier()

# 加载数据

data=load_iris()

# 定义参数调优的范围,randomforestclassifier__n_estimators __前面定义的是名字,后面定义的内容是参数

parameters={“randomforestclassifier__n_estimators”:range(1,11),

“randomforestclassifier__max_depth”:range(1,5)}

# 定义pipeline 流水线

pipeline=Pipeline([

(‘scaler’,StandardScaler()),

(‘randomforestclassifier’,rf)

])

# 使用GridSearchCV 进行参数调优

clf=GridSearchCV(estimator=pipeline,param_grid=parameters,cv=6)

# 进行数据集分类

clf.fit(data.data,data.target)

# 打印最优分数 给出不同参数情况下的评价结果

print(“最优分数:%.4lf”%clf.best_score_)

# 打印最优参数 描述了已取得最佳结果的参数的组合

print(“最优参数:%s”%clf.best_params_)

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请联系我们举报,一经查实,本站将立刻删除。

发布者:全栈程序员-站长,转载请注明出处:https://javaforall.net/191426.html原文链接:https://javaforall.net

(0)
全栈程序员-站长的头像全栈程序员-站长


相关推荐

  • 彻底弄懂二叉树的先序,中序,后序三种遍历与做题方式_二叉树的先序,中序,后序遍历例题

    彻底弄懂二叉树的先序,中序,后序三种遍历与做题方式_二叉树的先序,中序,后序遍历例题二叉树二叉树遍历二叉树题目计算机二级先序中序后序根

    2025年11月13日
    2
  • linux 如何关闭正在执行的php脚本

    linux 如何关闭正在执行的php脚本

    2022年2月11日
    49
  • java查询数据导出excel并返回给浏览器下载

    java查询数据导出excel并返回给浏览器下载效果图:1.点击导出表按钮2.接着就会出现下图3.点击上图中的确定按钮再接着就会出现下图4.点击上图中的保存按钮接着就会出现下图,浏览器下载完成后的提示5.打开下载好的文件如下图好了,废话不多少,上代码jsp前端代码<divstyle="height:30px;"> <a>时间:</a>…

    2022年6月28日
    25
  • 十大MySQL性能分析工具汇总!

    十大MySQL性能分析工具汇总!十大MySQL性能分析工具汇总!

    2022年4月24日
    44
  • harmonyos系统与安卓区别(uAndroid)

    目录一、前言二、HarmonyOS与Android的对比2.1HarmonyOS并不是Android的替代品2.2系统定位2.3内核对比2.4运行速度三、方舟编译器一、前言这段时间我在寻思这学习一下鸿蒙,第一是因为在着手做一个自己的开源项目,技术选型的时候想到了鸿蒙;第二是我个人非常看好鸿蒙系统的未来,清除明白华为和一些民族企业担负的责任和国人的期待,虽然带着一些民族感情;鸿蒙刚发布的时候自己是非常激动的,但是后来项目太忙一直没有认真的去了解过,这次打算花一部

    2022年4月13日
    159
  • 程序员常说的外包公司到底是什么意思_程序员项目外包

    程序员常说的外包公司到底是什么意思_程序员项目外包程序员工作的企业有好几种类型,比如说互联网企业,传统企业,还有外包公司,这几种类型的企业不论是工作性质还是福利待遇都有差异。都说外包公司不好,今天就来说说什么是外包公司。外包公司到底是什么?为了更好地分析,我们需要了解什么是外包。外包是一种将目标,委托给其他组织的管理模型。外包有很多种,如项目外包、产品外包、工程外包等等。而我们最为关心的,则是人力资源外包。这样说比较抽象,我来举个例子。项目外包:为了完成某个项目,出于进度、成本,甚至是风险转移的考量,将项目拆分一部分(如非核心部

    2022年9月30日
    2

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

关注全栈程序员社区公众号