sklearn.KFold「建议收藏」

sklearn.KFold「建议收藏」K折交叉验证:将样本切成K份,每次取其中一份做为测试集,剩余的K-1份做为训练集。在sklearn.model_selection中提供了几种K折交叉验证。生成样本>>>fromsklearn.datasetsimportmake_classification>>>data,target=make_classification(n_…

大家好,又见面了,我是你们的朋友全栈君。如果您正在找激活码,请点击查看最新教程,关注关注公众号 “全栈程序员社区” 获取激活教程,可能之前旧版本教程已经失效.最新Idea2022.1教程亲测有效,一键激活。

Jetbrains全系列IDE使用 1年只要46元 售后保障 童叟无欺

简介

K折交叉验证:将样本切成K份,每次取其中一份做为测试集,剩余的K-1份做为训练集。根据训练训练出模型或者假设函数。 把这个模型放到测试集上,得到分类率。计算k次求得的分类率的平均值,作为该模型或者假设函数的真实分类率。

在sklearn.model_selection 中提供了几种K折交叉验证。

生成样本

>>> from sklearn.datasets import make_classification
>>> data,target=make_classification(n_samples=10)
>>> print(target)
[1 1 0 1 1 0 0 1 0 0]

sklearn.model_selection.KFold

KFold按数据原有的顺序对数据进行分割。可以通过定义shuffle来打乱顺序。

>>> from sklearn.model_selection import KFold
>>> kfold= KFold(n_splits=5,random_state =None)
>>> for train_index,test_index in kfold.split(data,target):
...   print("TRAIN:", train_index, "TEST:", test_index)
...   print("TRAIN_target:", target[train_index].mean(), "TEST_target:", target[test_index].mean())
TRAIN: [2 3 4 5 6 7 8 9] TEST: [0 1]
TRAIN_target: 0.375 TEST_target: 1.0
TRAIN: [0 1 4 5 6 7 8 9] TEST: [2 3]
TRAIN_target: 0.5 TEST_target: 0.5
TRAIN: [0 1 2 3 6 7 8 9] TEST: [4 5]
TRAIN_target: 0.5 TEST_target: 0.5
TRAIN: [0 1 2 3 4 5 8 9] TEST: [6 7]
TRAIN_target: 0.5 TEST_target: 0.5
TRAIN: [0 1 2 3 4 5 6 7] TEST: [8 9]
TRAIN_target: 0.625 TEST_target: 0.0

sklearn.model_selection.StratifiedKFold

StratifiedKFold是KFold的一个变种,目的是保证每一个分层标签的比例和原始样本一致。

>>> from sklearn.model_selection import StratifiedKFold    
>>> stkfold= StratifiedKFold(n_splits=5,random_state =None)
>>> for train_index,test_index in stkfold.split(data,target):
...    print("TRAIN:", train_index, "TEST:", test_index)
...    print("TRAIN_target:", target[train_index].mean(), "TEST_target:", target[test_index].mean())
TRAIN: [1 3 4 5 6 7 8 9] TEST: [0 2]
TRAIN_target: 0.5 TEST_target: 0.5
TRAIN: [0 2 3 4 6 7 8 9] TEST: [1 5]
TRAIN_target: 0.5 TEST_target: 0.5
TRAIN: [0 1 2 4 5 7 8 9] TEST: [3 6]
TRAIN_target: 0.5 TEST_target: 0.5
TRAIN: [0 1 2 3 5 6 7 9] TEST: [4 8]
TRAIN_target: 0.5 TEST_target: 0.5
TRAIN: [0 1 2 3 4 5 6 8] TEST: [7 9]
TRAIN_target: 0.5 TEST_target: 0.5

sklearn.model_selection.RepeatedKFold

重复n次K-Fold ,每次重复有不同的随机性。

>>> from sklearn.model_selection import RepeatedKFold    
>>> rpkfold= RepeatedKFold(n_splits=5,n_repeats=2,random_state =2652124)
>>> for train_index,test_index in rpkfold.split(data,target):
...    print("TRAIN:", train_index, "TEST:", test_index)
...    print("TRAIN_target:", target[train_index].mean(), "TEST_target:", target[test_index].mean())
TRAIN: [0 1 3 4 5 6 7 9] TEST: [2 8]
TRAIN_target: 0.625 TEST_target: 0.0
TRAIN: [0 2 3 4 5 6 8 9] TEST: [1 7]
TRAIN_target: 0.375 TEST_target: 1.0
TRAIN: [0 1 2 4 5 6 7 8] TEST: [3 9]
TRAIN_target: 0.5 TEST_target: 0.5
TRAIN: [1 2 3 4 5 7 8 9] TEST: [0 6]
TRAIN_target: 0.5 TEST_target: 0.5
TRAIN: [0 1 2 3 6 7 8 9] TEST: [4 5]
TRAIN_target: 0.5 TEST_target: 0.5
TRAIN: [0 1 3 4 6 7 8 9] TEST: [2 5]
TRAIN_target: 0.625 TEST_target: 0.0
TRAIN: [0 1 2 3 4 5 8 9] TEST: [6 7]
TRAIN_target: 0.5 TEST_target: 0.5
TRAIN: [0 1 2 5 6 7 8 9] TEST: [3 4]
TRAIN_target: 0.375 TEST_target: 1.0
TRAIN: [0 2 3 4 5 6 7 9] TEST: [1 8]
TRAIN_target: 0.5 TEST_target: 0.5
TRAIN: [1 2 3 4 5 6 7 8] TEST: [0 9]
TRAIN_target: 0.5 TEST_target: 0.5

sklearn.model_selection.GroupKFold

按组对样本进行分层。
同一组不会出现在两个不同的分层中(不同组的数量必须至少等于折的数量)。

>>> import numpy as np
>>> from sklearn.model_selection import GroupKFold    
>>> gpkfold= GroupKFold(n_splits=5)
>>> groups = np.array([0, 0, 1 ,1 ,3 ,4 ,1 ,1 ,2 , 2])
>>> for train_index,test_index in gpkfold.split(data,target,groups):
...    print("TRAIN:", train_index, "TEST:", test_index)
...    print("TRAIN_target:", target[train_index].mean(), "TEST_target:", target[test_index].mean())
TRAIN: [0 1 4 5 8 9] TEST: [2 3 6 7]
TRAIN_target: 0.5 TEST_target: 0.5
TRAIN: [0 1 2 3 4 5 6 7] TEST: [8 9]
TRAIN_target: 0.625 TEST_target: 0.0
TRAIN: [2 3 4 5 6 7 8 9] TEST: [0 1]
TRAIN_target: 0.375 TEST_target: 1.0
TRAIN: [0 1 2 3 4 6 7 8 9] TEST: [5]
TRAIN_target: 0.555555555556 TEST_target: 0.0
TRAIN: [0 1 2 3 5 6 7 8 9] TEST: [4]
TRAIN_target: 0.444444444444 TEST_target: 1.0

结论

建模时,一般是使用KFold和StratifiedKFold。需要完成特殊分群的时,比如按月份划分数据,可以使用GroupKFold 。

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请联系我们举报,一经查实,本站将立刻删除。

发布者:全栈程序员-站长,转载请注明出处:https://javaforall.net/191520.html原文链接:https://javaforall.net

(0)
全栈程序员-站长的头像全栈程序员-站长


相关推荐

  • java工作流_Java 实现简单工作流

    java工作流_Java 实现简单工作流工作流主要运用到反射机制创建一张工作流表如:主键|工作流Code|工作流内容其中工作流,内容为Json格式工作流内容如下{“procCode”:”OPS”,”procName”:”c端补齐(乘客信息补全)”,”taskControlVoList”:[{“sortNo”:”10″,”taskCode”:”OPC”,”taskName”:”检查对应的订单信息是否存在”,”taskl…

    2022年7月7日
    21
  • Karate-让WebService的测试变的更简单![通俗易懂]

    Karate-让WebService的测试变的更简单![通俗易懂]karate的github项目地址:https://github.com/intuit/karatekarate是唯一一个将API测试自动化、模拟和性能测试结合到一个统一框架当中的开源工具。除了强大的JSON和XML断言之外,你还可以并行运行测试来提高运行速度——这对于HTTPAPI测试非常的重要。karate可以轻松的构建和重用复杂的有效请求负载并动态的响应数据构建更多的请求。负载和模…

    2025年7月13日
    1
  • vue业务组件封装_怎么去设计一个组件封装

    vue业务组件封装_怎么去设计一个组件封装vue:组件、组件化开发、父子组件传值。

    2022年9月24日
    1
  • 【软件工具】服务器硬件资源监控

    【软件工具】服务器硬件资源监控服务器资源使用情况及硬件监控,是服务器管理员或运维人员必备的技能和工作内容。对于服务器硬件的时时监控,除了需要掌握定的方法外,还常会用到些相应的相关软件程序。当然,运维同仁般都具备定的编程能力,根据服务器情况,编写个便捷、好用和适合自己的服务器硬件监控软件也是很有必要的。     服务器硬件监控常用方法及相关软件:  raid卡监控:raid卡常有rai

    2022年8月30日
    3
  • 新疆语 维吾尔语字母表与发音

    新疆语 维吾尔语字母表与发音发音:http://www.tudou.com/programs/view/7RQa5doEjcE/?FR=LIAN

    2022年8月3日
    9
  • 腾讯七大事业群_腾讯pcg事业群难进吗

    腾讯七大事业群_腾讯pcg事业群难进吗企业发展事业群(CorporateDevelopmentGroup,简称CDG)意如其名,企业发展事业群CDG在腾讯内部担当战略规划、投资者关系维护、业务孵化和投资并购等角色。众所周知的微信、财付通、QQ邮箱等业务均属CDG,诸多投资工作也由CDG负责,比如国内外投资并购、海外市场推广等工作,有志于股权投资、创新业务、国际化并拥有专长的同学可格外关注!互动娱乐事业群(I

    2022年9月14日
    1

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

关注全栈程序员社区公众号