google earth engine(GEE)监督分类总结与代码分享

google earth engine(GEE)监督分类总结与代码分享提供分类代码以及思路整理

大家好,又见面了,我是你们的朋友全栈君。如果您正在找激活码,请点击查看最新教程,关注关注公众号 “全栈程序员社区” 获取激活教程,可能之前旧版本教程已经失效.最新Idea2022.1教程亲测有效,一键激活。

Jetbrains全系列IDE使用 1年只要46元 售后保障 童叟无欺

在我的监督分类代码里,我一共分为了以下几个步骤:

 

1.制作训练样本数据;

2.遥感数据的筛选(时间、地点与云量);

3.遥感数据预处理(去云、镶嵌、裁剪);

4.构建光谱指数:NDVI、mNDWI,NDBI;

5.构建分类样本集 并分为训练样本与验证样本;

6.选择合适方法进行分类;

7.精度验证;

8.导出分类结果;

上面的步骤基本为·监督分类常用步骤,可以根据自己的需求修改,但大体没什么变化。

1.制作训练样本数据;

构造样本数据一般有两个方法,一个是本地上传矢量的训练数据;另外一个是在GEE里面自己选点制作。我主要介绍第二种方法。

构造样本数据,首先创建一个new layer,然后选择该要素,并在地图上标点。

google earth engine(GEE)监督分类总结与代码分享

选择好样本点之后,记得打开该要素,改变图层类型为featurecollection,并添加分类属性:landcover与值。比如耕地样本点的值就为1。

google earth engine(GEE)监督分类总结与代码分享

2.遥感数据的筛选(时间、地点与云量);

这一步根据自己的需求选取,我代码里面的roi就是研究区。如果你发现研究区影像云非常多,可以把过滤云标准调整高一点。

var startDate = ee.Date('2018-04-01'); 
var endDate = ee.Date('2018-9-30'); 
var collection = l8
                  .filterDate(startDate, endDate)//时间过滤
                  .filterBounds(roi)//位置过滤
                  .filter(ee.Filter.lte('CLOUD_COVER',20))//云量过滤
                  ;

3.遥感数据预处理(去云、镶嵌、裁剪);

首先是构造一个去云函数,并且做好封装,以便你随时调用。

var remove_cloud=function(collection)
    
    {
      // 计算每个像元的云分量,定义函数fun_calCloudScore
      var fun_calCloudScore = function(image) {
        return ee.Algorithms.Landsat.simpleCloudScore(ee.Image(image));//simpleCloudScore计算TOA数据每一个像元的云指数
      };
      //确定要进行函数运算的数据集以及函数
      var calCloudScore = ee.ImageCollection(collection)
          .map(fun_calCloudScore)
          ;
      
      //屏蔽阈值超过10的像素
      var fun_maskCloud = function(image) {
        
        var mask = image.select(['cloud']).lte(10);//TOA数据经simpleCloudScore计算产生“cloud”属性,“cloud”小于10的像元保留
        // 显示云显示云掩膜
        return image.updateMask(mask);//更新
      };
      //确定要进行函数运算的数据集以及函数
      var maskCloud = ee.ImageCollection(calCloudScore)
          .map(fun_maskCloud)
          ;
     
      var maskCloud2=maskCloud.mean()
       print('maskCloud2',maskCloud2 )
      Map.addLayer(maskCloud,visualParam, 'maskCloud', false);//显示干净像元筛选过的maskCloud
      Map.addLayer(maskCloud2,visualParam, 'maskCloud2', false);//显示干净像元筛选过的maskCloud
      
      return maskCloud;
    }

之后一句话进行镶嵌与裁剪:

var image=remove_cloud(collection).mosaic().clip(roi);

4.构建光谱指数:NDVI、mNDWI,NDBI;

这一步根据每个人的要求来。我的分类体系里面有水体,所以构建mndwi;因为有建筑,所以构建ndbi;因为有植被,所以构建NDVI。当然,这一步可以不要。

var mndwi = image.normalizedDifference(['B3', 'B6']).rename('MNDWI');//计算MNDWI
var ndbi = image.normalizedDifference(['B6', 'B5']).rename('NDBI');//计算NDBI
var ndvi = image.normalizedDifference(['B5', 'B4']).rename('NDVI');//计算NDVI

需要注意一点的是,你计算出了这些指数,但是它们都是单幅影像,你需要把它们当做元影像的一个波段,所以需要把它们添加到你的image里面:

image=image
      .addBands(ndvi)
      .addBands(ndbi)
      .addBands(mndwi)

5.构建分类样本集 并分为训练样本与验证样本;

首先需要把所有的样本数据融合为一个数据,即都为训练数据。我们现在要构造每个类别的特征,而这些特征包括各个波段与指数的值,所以需要一个波段选择的过程。training就是我们需要的包含类别特征的样本集。

var classNames = city.merge(water).merge(tree).merge(crop).merge(bare);

var bands = ['B2', 'B3', 'B4', 'B5', 'B6', 'B7','MNDWI','NDBI','NDVI'];

var training = image.select(bands).sampleRegions({
  collection: classNames,
  properties: ['landcover'],
  scale: 30
});

由于我们需要的不仅是训练数据,还有验证数据。那我们把样本分为两个部分:

var withRandom = training.randomColumn('random');//样本点随机的排列
// 我们想保留一些数据进行测试,以避免模型过度拟合。
var split = 0.7; 
var trainingPartition = withRandom.filter(ee.Filter.lt('random', split));//筛选70%的样本作为训练样本
var testingPartition = withRandom.filter(ee.Filter.gte('random', split));//筛选30%的样本作为测试样本

6.选择合适方法进行分类;

GEE提供的方法实在是太多了,这个根据个人需求来,下图就为gee的所有监督分类方法。

google earth engine(GEE)监督分类总结与代码分享

现在我们有方法,有样本集1,那就进行分类:

// 选择分类的属性
var classProperty = 'landcover';

//分类方法选择smileCart() randomForest() minimumDistance libsvm
var classifier = ee.Classifier.libsvm().train({
  features: trainingPartition,
  classProperty: 'landcover',
  inputProperties: bands
});
//分类
var classified = image.select(bands).classify(classifier);

7.精度验证;

精度验证,这就得用到我们之前的验证数据集。这一步可以得到kappa系数、总体精度与转移矩阵。

var test = testingPartition.classify(classifier);//运用测试样本分类,确定要进行函数运算的数据集以及函数

var confusionMatrix = test.errorMatrix('landcover', 'classification');//计算混淆矩阵
print('confusionMatrix',confusionMatrix);//面板上显示混淆矩阵
print('overall accuracy', confusionMatrix.accuracy());//面板上显示总体精度
print('kappa accuracy', confusionMatrix.kappa());//面板上显示kappa值

8.导出分类结果;

这个导出都千篇一律,没什么说的,根据自己的要求到处就行,比如说这是我的导出:

Export.image.toDrive({
        image:  classified,//分类结果
        description: 'xuzhou_cart',//文件名
        folder: 'xuzhou_cart',
        scale: 30,//分辨率
        region: roi,//区域
        maxPixels:34e10//此处值设置大一些,防止溢出
      });

下图就是我的监督分类结果,可以看到效果还不错:

google earth engine(GEE)监督分类总结与代码分享

最后给大家一个小建议:选择样本很重要,分类方法倒是次要的,要保证样本的数量以及准确率。

完整代码链接:https://code.earthengine.google.com/3beb3602a1eb4ca79a3f04dddeee7192

可以前往“地信遥感数据汇”获取更多数据。
https://www.gisrsdata.com/

google earth engine(GEE)监督分类总结与代码分享

 VX:kitmyfaceplease2;欢迎关注公众号:锐多宝的地理空间;

google earth engine(GEE)监督分类总结与代码分享

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请联系我们举报,一经查实,本站将立刻删除。

发布者:全栈程序员-站长,转载请注明出处:https://javaforall.net/191968.html原文链接:https://javaforall.net

(0)
全栈程序员-站长的头像全栈程序员-站长


相关推荐

  • 随机森林算法通俗易懂(改进的随机森林算法)

        1)决策树    2)随机森林    4)OutofBag评价    3)随机森林的应用计算特征重要性异常值检测——IsolationForest计算样本的相似度 …

    2022年4月15日
    143
  • R、RStudio下载与安装方法

    R、RStudio下载与安装方法现如今,R语言是统计领域广泛使用的工具,是属于GNU系统的一个自由、免费、源代码开放的软件,是用于统计计算和统计绘图的优秀工具。而RStudio是R的集成开发环境,用它进行R编程的学习和实践会更加轻松和方便。下面就教大家如何下载并安装R和RStudio,比较简单。R的维护工作由一个国际化的开发者团队负责。R软件的官方下载页面叫作TheComprehensiveRArchiveNetwor…

    2022年6月30日
    48
  • 稳定性测试_pdp职业性格测试结果分析

    稳定性测试_pdp职业性格测试结果分析最近工作过程中没少开会,产品总监与研发总监就产品可用性和稳定性开始了一轮大战。于是我搜集网络资源,罗列一些稳定性测试,只为分享。1关于软件稳定性测试的思路如何测试软件的稳定性其实是很难的,按照常规思路,只有长期的用户场景测试才能一定程度上保证软件的稳定性是可靠的,但并不能百分之百确定软件就是稳定的。软件测试本身就是由局限和尽头的,无穷的测试只能带来高成本的投入和无限期的计…

    2025年10月16日
    3
  • 关机相关(shutdown,reboot)

    关机相关(shutdown,reboot)

    2021年12月17日
    32
  • Laravel5.2中Eloquent与DB类的区别是什么?

    Laravel5.2中Eloquent与DB类的区别是什么?

    2021年11月9日
    42
  • enterprise architect使用教程绘制用例图_用例图的箭头怎么画

    enterprise architect使用教程绘制用例图_用例图的箭头怎么画在《UML面向对象分析、建模与设计》中学到了用例图,用例图是指由参与者(Actor)、用例(UseCase),边界以及它们之间的关系构成的用于描述系统功能的视图。用例图(UserCase)是外部用户(被称为参与者)所能观察到的系统功能的模型图。用例图中的主要元素包括参与者、用例以及元素之间的关系(这三个应该很好理解,一啪啦的废话不多说了,有什么不懂的直接留言或者私信)。我们可以看一个用EA绘制餐馆管理系统的用例图接下来讲解怎么用EnterpriseArchitect(以下简称EA)工具来画步

    2025年9月25日
    5

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

关注全栈程序员社区公众号