pytorch MSELoss参数详解「建议收藏」

pytorch MSELoss参数详解「建议收藏」pytorchMSELoss参数详解importtorchimportnumpyasnploss_fn=torch.nn.MSELoss(reduce=False,size_average=False)a=np.array([[1,2],[3,8]])b=np.array([[5,4],[6,2]])input=torch.autograd.Variable(to…

大家好,又见面了,我是你们的朋友全栈君。如果您正在找激活码,请点击查看最新教程,关注关注公众号 “全栈程序员社区” 获取激活教程,可能之前旧版本教程已经失效.最新Idea2022.1教程亲测有效,一键激活。

Jetbrains全系列IDE使用 1年只要46元 售后保障 童叟无欺

pytorch MSELoss参数详解

import torch
import numpy as np
loss_fn = torch.nn.MSELoss(reduce=False, size_average=False)
a=np.array([[1,2],[3,8]])
b=np.array([[5,4],[6,2]])
input = torch.autograd.Variable(torch.from_numpy(a))
target = torch.autograd.Variable(torch.from_numpy(b))
loss = loss_fn(input.float(), target.float())
print(loss)

loss_fn = torch.nn.MSELoss(reduce=False, size_average=True)
a=np.array([[1,2],[3,8]])
b=np.array([[5,4],[6,2]])
input = torch.autograd.Variable(torch.from_numpy(a))
target = torch.autograd.Variable(torch.from_numpy(b))
loss = loss_fn(input.float(), target.float())
print(loss)

a=np.array([[1,2],[3,8]])
b=np.array([[5,4],[6,2]])
loss_fn = torch.nn.MSELoss(reduce=True, size_average=False)
input = torch.autograd.Variable(torch.from_numpy(a))
target = torch.autograd.Variable(torch.from_numpy(b))
loss = loss_fn(input.float(), target.float())
print(loss)

a=np.array([[1,2],[3,8]])
b=np.array([[5,4],[6,2]])
loss_fn = torch.nn.MSELoss(reduce=True, size_average=True)
input = torch.autograd.Variable(torch.from_numpy(a))
target = torch.autograd.Variable(torch.from_numpy(b))
loss = loss_fn(input.float(), target.float())
print(loss)

a=np.array([[1,2],[3,8]])
b=np.array([[5,4],[6,2]])
loss_fn = torch.nn.MSELoss()##reduce=True, size_average=True
input = torch.autograd.Variable(torch.from_numpy(a))
target = torch.autograd.Variable(torch.from_numpy(b))
loss = loss_fn(input.float(), target.float())
print(loss)

loss_fn = torch.nn.MSELoss(reduction = 'none')
a=np.array([[1,2],[3,8]])
b=np.array([[5,4],[6,2]])
input = torch.autograd.Variable(torch.from_numpy(a))
target = torch.autograd.Variable(torch.from_numpy(b))
loss = loss_fn(input.float(), target.float())
print(loss)

loss_fn = torch.nn.MSELoss(reduction = 'sum')
a=np.array([[1,2],[3,8]])
b=np.array([[5,4],[6,2]])
input = torch.autograd.Variable(torch.from_numpy(a))
target = torch.autograd.Variable(torch.from_numpy(b))
loss = loss_fn(input.float(), target.float())
print(loss)

loss_fn = torch.nn.MSELoss(reduction = 'none')
a=np.array([[1,2],[3,8]])
b=np.array([[5,4],[6,2]])
input = torch.autograd.Variable(torch.from_numpy(a))
target = torch.autograd.Variable(torch.from_numpy(b))
loss = loss_fn(input.float(), target.float())
print(loss)

loss_fn = torch.nn.MSELoss(reduction = 'elementwise_mean')
a=np.array([[1,2],[3,8]])
b=np.array([[5,4],[6,2]])
input = torch.autograd.Variable(torch.from_numpy(a))
target = torch.autograd.Variable(torch.from_numpy(b))
loss = loss_fn(input.float(), target.float())
print(loss)



版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请联系我们举报,一经查实,本站将立刻删除。

发布者:全栈程序员-站长,转载请注明出处:https://javaforall.net/192085.html原文链接:https://javaforall.net

(0)
全栈程序员-站长的头像全栈程序员-站长


相关推荐

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

关注全栈程序员社区公众号