遗传算法原理及算法实例分析_遗传算法案例分析

遗传算法原理及算法实例分析_遗传算法案例分析遗传算法原理解析遗传算法(GA)是一种元启发式自然选择的过程,属于进化算法(EA)大类。遗传算法通常是利用生物启发算子,如变异、交叉和选择来生成高质量的优化和搜索问题的解决方案。借鉴生物进化理论,遗传算法将问题模拟成一个生物进化过程,通过复制、交叉、突变等操作产生下一代的解,并逐步淘汰适应度函数值低的解,增加适应度函数高的解。这样进化N代后就很有可能会进化出适应度函数值很高的个体。

大家好,又见面了,我是你们的朋友全栈君。如果您正在找激活码,请点击查看最新教程,关注关注公众号 “全栈程序员社区” 获取激活教程,可能之前旧版本教程已经失效.最新Idea2022.1教程亲测有效,一键激活。

Jetbrains全系列IDE使用 1年只要46元 售后保障 童叟无欺

遗传算法原理解析

遗传算法(GA)是一种元启发式自然选择的过程,属于进化算法(EA)大类。遗传算法通常是利用生物启发算子,如变异、交叉和选择来生成高质量的优化和搜索问题的解决方案。

借鉴生物进化理论,遗传算法将问题模拟成一个生物进化过程,通过遗传、交叉、突变、自然选择等操作产生下一代的解,并逐步淘汰适应度函数值低的解,增加适应度函数高的解。这样进化N代后就很有可能会进化出适应度函数值很高的个体。

与遗传算法有关的生物学概念:

(1)染色体(chromosome)
生物是由细胞组成,每一个细胞中都有一套相同的染色体。一条染色体由若干基因(gene) 组成,每个基因控制一种特定的蛋白质,从而决定生物的某种特征。所有染色体合称为基因组(genome)。基因组完全决定了一个生物个体。该个体在微观(基因)层次的表现称为基因型 (genotype),在宏观(特征)层次的表现称为显型 (phenotype)。在简单的遗传算法中,将基因组中的若干条染色体看作一整条染色体。
(2) 个体复制
在复制的过程中,父母的染色体通过交叉(crossover)产生子女的染色体。染色体还可以以一定的小概率变异(mutate)。

遗传算法本质上是一种搜索算法,搜索算法的共同特征为:

  1. 首先组成一组候选解
  2. 依据某些适应性条件测算这些候选解的适应度
  3. 根据适应度保留某些候选解,放弃其他候选解
  4. 对保留的候选解进行某些操作,生成新的候选解

  遗传算法原理及算法实例分析_遗传算法案例分析
交叉(Crossover):2条染色体交换部分基因,来构造下一代的2条新的染色体。
交叉前:
00000|011100000000|10000
11100|000001111110|00101
交叉后:
00000|000001111110|10000
11100|011100000000|00101
染色体交叉是以一定的概率发生的,这个概率记为Pc 。
变异(Mutation):在繁殖过程,新产生的染色体中的基因会以一定的概率出错,称为变异。变异发生的概率记为Pm 。
变异前:
000001110000000010000
变异后:
000001110000100010000
适应度函数 ( Fitness Function ):用于评价某个染色体的适应度,用f(x)表示。有时需要区分染色体的适应度函数与问题的目标函数。例如:0-1背包问题的目标函数是所取得物品价值,但将物品价值作为染色体的适应度函数可能并不一定适合。适应度函数与目标函数是正相关的,可对目标函数作一些变形来得到适应度函数。

遗传算法伪代码

基本遗传算法伪代码 /* * Pc:交叉发生的概率 * Pm:变异发生的概率 * M:种群规模 * G:终止进化的代数 * Tf:进化产生的任何一个个体的适应度函数超过Tf,则可以终止进化过程 */ 初始化Pm,Pc,M,G,Tf等参数。随机产生第一代种群Pop do {   计算种群Pop中每一个体的适应度F(i)。   初始化空种群newPop   do   {     根据适应度以比例选择算法从种群Pop中选出2个个体     if ( random ( 0 , 1 ) < Pc )     {       对2个个体按交叉概率Pc执行交叉操作     }     if ( random ( 0 , 1 ) < Pm )     {       对2个个体按变异概率Pm执行变异操作     } 将2个新个体加入种群newPop中 } until ( M个子代被创建 ) 用newPop取代Pop }until ( 任何染色体得分超过Tf, 或繁殖代数超过G )

遗传算法优化方法:

(1)精英主义(Elitist Strategy)选择:是基本遗传算法的一种优化。为了防止进化过程中产生的最优解被交叉和变异所破坏,可以将每一代中的最优解原封不动的复制到下一代中。
(2)插入操作:可在3个基本操作的基础上增加一个插入操作。插入操作将染色体中的某个随机的片段移位到另一个随机的位置。

遗传算法实例

这里选用参考3中的实例:
计算函数

遗传算法原理及算法实例分析_遗传算法案例分析

的最小值,其中每个变量的取值区间都是[-1, +1]。

首先,确定适应度的函数:

function y = my_fitness(population)% population是随机数[0,1]矩阵,下面的操作改变范围为[-1,1]population = 2 * (population - 0.5); y = sum(population.^2, 2); % 行的平方和

遗传算法实现:

function [best_fitness, elite, generation, last_generation] = my_ga( ...
    number_of_variables, ...    % 求解问题的参数个数
    fitness_function, ...       % 自定义适应度函数名
    population_size, ...        % 种群规模(每一代个体数目)
    parent_number, ...          % 每一代中保持不变的数目(除了变异)
    mutation_rate, ...          % 变异概率
    maximal_generation, ...     % 最大演化代数
    minimal_cost ...            % 最小目标值(函数值越小,则适应度越高)
)

% 累加概率
% 假设 parent_number = 10
% 分子 parent_number:-1:1 用于生成一个数列
% 分母 sum(parent_number:-1:1) 是一个求和结果(一个数)
% 分子 10     9     8     7     6     5     4     3     2     1
% 分母 10+9+...+1=55
% 相除 0.1818    0.1636    0.1455    0.1273    0.1091    0.0909    0.0727    0.0545    0.0364    0.0182
% 累加(cumsum) 0.1818    0.3455    0.4909    0.6182    0.7273    0.8182    0.8909    0.9455    0.9818    1.0000
% 运算结果可以看出: 累加概率函数是一个从0到1增长得越来越慢的函数
cumulative_probabilities = cumsum((parent_number:-1:1) / sum(parent_number:-1:1)); % 1个长度为parent_number的数列
best_fitness = ones(maximal_generation, 1);% 记录每一代最佳适应度,先初始化为1
elite = zeros(maximal_generation, number_of_variables);% 记录每一代的最优解,初始化为0

% 子女数量=种群数量 - 父母数量(父母即每一代中不发生改变的个体)
child_number = population_size - parent_number; % 每一代子女的数目

% population_size 对应矩阵的行,每一行表示1个个体,行数=个体数(种群数量)
% number_of_variables 对应矩阵的列,列数=参数个数(个体特征由这些参数表示)
population = rand(population_size, number_of_variables);% 初始化种群
last_generation = 0; % 记录跳出循环时的代数

for generation = 1 : maximal_generation % 演化循环开始
    
    % feval把数据带入到一个定义好的函数句柄中计算
    % 把population矩阵带入fitness_function函数计算
    cost = feval(fitness_function, population); % 计算所有个体的适应度(population_size*1的矩阵)

    % index记录排序后每个值原来的行数
    [cost, index] = sort(cost); % 将适应度函数值从小到大排序

    % index(1:parent_number) 
    % 前parent_number个cost较小的个体在种群population中的行数
    % 选出这部分(parent_number个)个体作为父母,其实parent_number对应交叉概率
    population = population(index(1:parent_number), :); % 先保留一部分较优的个体
    % population矩阵是不断变化的
    % cost在经过前面的sort排序后,矩阵已经改变为升序的
    % cost(1)即为本代的最佳适应度
    best_fitness(generation) = cost(1); % 记录本代的最佳适应度

    % population矩阵第一行为本代的最优解(精英)
    elite(generation, :) = population(1, :); % 记录本代的最优解(精英)

    % 若本代的最优解已足够好,则停止演化
    if best_fitness(generation) < minimal_cost; 
        last_generation = generation;
        break; 
    end
    
    % 交叉变异产生新的种群,染色体交叉开始
    for child = 1:2:child_number % 步长为2是因为每一次交叉会产生2个孩子
        
        % cumulative_probabilities 长度为 parent_number
        % 从中随机选择2个父母出来  (child+parent_number)
        mother = find(cumulative_probabilities > rand, 1); % 选择一个较优秀的母亲
        father = find(cumulative_probabilities > rand, 1); % 选择一个较优秀的父亲
        
        % ceil:向上取整
        % rand 生成一个随机数
        % 即随机选择了一列,这一列的值交换
        crossover_point = ceil(rand*number_of_variables); % 随机地确定一个染色体交叉点
        
        % 假如crossover_point=3, number_of_variables=5
        % mask1 = 1     1     1     0     0
        % mask2 = 0     0     0     1     1
        mask1 = [ones(1, crossover_point), zeros(1, number_of_variables - crossover_point)];
        mask2 = not(mask1);
        
        % 获取分开的4段染色体
        mother_1 = mask1 .* population(mother, :); % 母亲染色体的前部分
        mother_2 = mask2 .* population(mother, :); % 母亲染色体的后部分
        
        father_1 = mask1 .* population(father, :); % 父亲染色体的前部分
        father_2 = mask2 .* population(father, :); % 父亲染色体的后部分
        
        % 得到下一代
        population(parent_number + child, :) = mother_1 + father_2; % 一个孩子
        population(parent_number+child+1, :) = mother_2 + father_1; % 另一个孩子
        
    end % 染色体交叉结束
    
    
    % 染色体变异开始,变异种群
    mutation_population = population(2:population_size, :); % 精英不参与变异,从2开始    
    number_of_elements = (population_size - 1) * number_of_variables; % 全部基因数目
    number_of_mutations = ceil(number_of_elements * mutation_rate); % 变异的基因数目(基因总数*变异率)
    
    % rand(1, number_of_mutations) 生成number_of_mutations个随机数(范围0-1)组成的矩阵(1*number_of_mutations)
    % 数乘后,矩阵每个元素表示发生改变的基因的位置(元素在矩阵中的一维坐标)
    mutation_points = ceil(number_of_elements * rand(1, number_of_mutations)); % 确定要变异的基因
    
    % 被选中的基因都被一个随机数替代,完成变异
    mutation_population(mutation_points) = rand(1, number_of_mutations); % 对选中的基因进行变异操作
    population(2:population_size, :) = mutation_population; % 发生变异之后的种群
    % 染色体变异结束
end % 演化循环结束

函数测试:

clc,clear all,close all;

% 调用 my_ga 进行计算
% 求解问题的参数个数         10
% 自定义适应度函数名         my_fitness
% 种群规模                  100
% 每一代中保持不变的数目     50 (即交叉率0.5)
% 变异概率                  0.1 (1/10的个体发生变异)
% 最大演化代数              10000 10000代
% 最小目标值                1.0e-6 个体适应度函数值 < 0.000001结束
[best_fitness, elite, generation, last_generation] = my_ga(10, 'my_fitness', 100, 50, 0.1, 10000, 1.0e-6);

% 输出后10行
disp(last_generation); 
i_begin = last_generation - 9;
disp(best_fitness(i_begin:last_generation,:));
% disp(best_fitness(9990:10000,:));
% disp(elite(9990:10000,:))
% 不要写成这样,因为GA常常在中间就跳出循环了

% 将elite值转化为问题范围内
my_elite = elite(i_begin:last_generation,:);
my_elite = 2 * (my_elite - 0.5);
disp(my_elite);

% 最佳适应度的演化情况
figure
loglog(1:generation, best_fitness(1:generation), 'linewidth',2)
xlabel('Generation','fontsize',15);
ylabel('Best Fitness','fontsize',15);
set(gca,'fontsize',15,'ticklength',get(gca,'ticklength')*2);

% 最优解的演化情况
figure
semilogx(1 : generation, 2 * elite(1 : generation, :) - 1)
xlabel('Generation','fontsize',15);
ylabel('Best Solution','fontsize',15);
set(gca,'fontsize',15,'ticklength',get(gca,'ticklength')*2);

遗传算法原理及算法实例分析_遗传算法案例分析
遗传算法原理及算法实例分析_遗传算法案例分析

参考:
http://blog.jobbole.com/110913/
http://blog.csdn.net/dazhong159/article/details/7908531

http://blog.sciencenet.cn/blog-3102863-1029280.html

https://github.com/Shuai-Xie/genetic-algorithm

https://github.com/yanshengjia/artificial-intelligence/tree/master/genetic-algorithm-for-functional-maximum-problem/src

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请联系我们举报,一经查实,本站将立刻删除。

发布者:全栈程序员-站长,转载请注明出处:https://javaforall.net/194234.html原文链接:https://javaforall.net

(0)
全栈程序员-站长的头像全栈程序员-站长


相关推荐

  • 超级用户权限root_小米开发版root权限获取

    超级用户权限root_小米开发版root权限获取小米手机6X有没有办法开启ROOT超级权限?我们知道,安卓手机有ROOT超级权限,如果手机开启root相关权限,能够实现更好的功能,举例子,我们部门的营销部门,使用一些营销软件都需要在ROOT超级权限下执行,如果手机没办法获的root的权限,即没办法正常使用具体的功能。小米手机6X开发版系统自身拥有root权限管理工具,如果你使用的是小米手机6X稳定版,建议可以先将小米手机6X刷入开发版,再进…

    2025年6月18日
    5
  • sqlSessionFactory异常

    sqlSessionFactory异常org.springframework.beans.factory.BeanCreationException:Errorcreatingbeanwithname‘sqlSessionFactory’definedinclasspathresource[spring/applicationContext.xml]:Invocationofinitmethodfai…

    2022年4月29日
    44
  • pycharm学生版更新license「建议收藏」

    pycharm学生版更新license「建议收藏」pycharm的学生license一年过期,需要更新license.看网上的po出的经验较少,即使有也有错误,前几天成功更新了,分享一下经验。1.首先登陆jetbrainshttps://www.jetbrains.com/zh-cn/2.使用学校邮箱登陆后查看license因为是前几天更新的所以这个截图是已经更新过的,如果是一年期license过期的话(就是validthrough日期已过),大概是红圈这个位置有一个绿色的“renew…”(具体内容不记得了)。3.点开后输入学校邮箱这时候

    2022年8月28日
    5
  • 进程控制块、进程上下文

    进程控制块、进程上下文一 进程控制块 nbsp nbsp nbsp nbsp nbsp 为了描述和控制进程的运行 系统为每个进程定义了一个数据结构 进程控制块 PCB nbsp 它是进程重要的组成部分 它记录了操作系统所需的 用于描述进程的当前状态和控制进程的全部信息 nbsp 操作系统就是根据进程的 PCB 来感知进程的存在 并依此对进程进行管理和控制 PCB 是进程存在的唯一标识 nbsp nbsp nbsp nbsp nbsp nbsp PCB 主要包括如下 4 方面的信息 nbsp

    2025年12月2日
    5
  • java8时间新特性(localDate 和 Date 之间互转)

    java8时间新特性(localDate 和 Date 之间互转)时间日期相减java8新特性

    2022年10月3日
    4
  • c语言中concat函数,SQL注入中用到的Concat函数详解-菜鸟白帽扫盲

    c语言中concat函数,SQL注入中用到的Concat函数详解-菜鸟白帽扫盲在我们WEB安全测试的时候,会经常使用到这一语法,因此应该透彻理解这一函数,今天好好实践了一下,整理如下。1.Concat函数:concat()是一个函数,用于用于将两个字符串连接起来,形成一个单一的字符串,类似于字符串拼接;语法:SELECTCONCAT(str1,str2,…)执行结果:​2.实战演示:查看users表下的数据SELECT*FROMusers那么当一条语句为SELE…

    2022年5月22日
    102

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

关注全栈程序员社区公众号