遗传算法的应用实例python实现_遗传算法Python解决一个问题

遗传算法的应用实例python实现_遗传算法Python解决一个问题$n:\5~”f1Y!G2T&j%t2F0N#p$x.y!W$j-o1o,ppython实现的遗传算法实例(一))h#F+A#N:p”a&c”^4g%[8i6~%L#]$B&s2U'[7B:_一、遗传算法介绍遗传算法是通过模拟大自然中生物进化的历程,来解决问题的。大自然中一个种群经历过若干代的自然…

大家好,又见面了,我是你们的朋友全栈君。如果您正在找激活码,请点击查看最新教程,关注关注公众号 “全栈程序员社区” 获取激活教程,可能之前旧版本教程已经失效.最新Idea2022.1教程亲测有效,一键激活。

Jetbrains全系列IDE使用 1年只要46元 售后保障 童叟无欺

$ n: \5 ~” f1 Y! G2 T& j

% t2 F0 N# p$ x. y! W$ j- o1 o, ppython实现的遗传算法实例(一)

) h# F+ A# N: p” a& c” ^4 g% [8 i6 ~% L# ]$ B& s2 U’ [7 B: _

一、遗传算法介绍

遗传算法是通过模拟大自然中生物进化的历程,来解决问题的。大自然中一个种群经历过若干代的自然选择后,剩下的种群必定是适应环境的。把一个问题所有的解看做一个种群,经历过若干次的自然选择以后,剩下的解中是有问题的最优解的。当然,只能说有最优解的概率很大。这里,我们用遗传算法求一个函数的最大值。4 ]; z: O3 }3 A/ b0 a% X/ b  Y

f(x) = 10 * sin( 5x ) + 7 * cos( 4x ),    0 <=  x <= 101、将自变量x进行编码

取基因片段的长度为10, 则10位二进制位可以表示的范围是0到1023。基因与自变量转变的公式是x = b2d(individual) * 10 / 1023。构造初始的种群pop。每个个体的基因初始值是[0, 1, 0, 1, 0, 1, 0, 1, 0, 1]2、计算目标函数值

根据自变量与基因的转化关系式,求出每个个体的基因对应的自变量,然后将自变量代入函数f(x),求出每个个体的目标函数值。3、适应度函数

适应度函数是用来评估个体适应环境的能力,是进行自然选择的依据。本题的适应度函数直接将目标函数值中的负值变成0. 因为我们求的是最大值,所以要使目标函数值是负数的个体不适应环境,使其繁殖后代的能力为0.适应度函数的作用将在自然选择中体现。4、自然选择

自然选择的思想不再赘述,操作使用轮盘赌算法。其具体步骤:

假设种群中共5个个体,适应度函数计算出来的个体适应性列表是fitvalue = [1 ,3, 0, 2, 4] ,totalvalue = 10 , 如果将fitvalue画到圆盘上,值的大小表示在圆盘上的面积。在转动轮盘的过程中,单个模块的面积越大则被选中的概率越大。选择的方法是将fitvalue转化为[1 , 4 ,4 , 6 ,10], fitvalue / totalvalue = [0.1 , 0.4 , 0.4 , 0.6 , 1.0] . 然后产生5个0-1之间的随机数,将随机数从小到大排序,假如是[0.05 , 0.2 , 0.7 , 0.8 ,0.9],则将0号个体、1号个体、4号个体、4号个体、4号个体拷贝到新种群中。自然选择的结果使种群更符合条件了。5、繁殖

假设个体a、b的基因是

a = [1, 0, 0, 0, 0, 1, 1, 1, 0, 0]

4 j. f; [8 ]: y

b = [0, 0, 0, 1, 1, 0, 1, 1, 1, 1]

# [0 H5 c+ L4 U, k8 u

这两个个体发生基因交换的概率pc = 0.6.如果要发生基因交换,则产生一个随机数point表示基因交换的位置,假设point = 4,则:

7 Z  X: K2 ~2 Y. v9 d

a = [1, 0, 0, 0, 0, 1, 1, 1, 0, 0]3 l3 Z” q. e/ m  o6 v” @: m! L

b = [0, 0, 0, 1,1, 0, 1, 1, 1, 1]

交换后为:( R  J3 G3 ~) O0 b% T. n; q: _; V/ ^

a = [1, 0, 0, 0, 1, 0, 1, 1, 1, 1]1 m! p( x5 D; b- w/ _; k

b = [0, 0, 0, 1, 0, 1, 1, 1, 0, 0]6、突变

遍历每一个个体,基因的每一位发生突变(0变为1,1变为0)的概率为0.001.突变可以增加解空间二、代码def b2d(b): #将二进制转化为十进制 x∈[0,10]        t = 0        for j in range(len(b)):                t += b[j] * (math.pow(2, j))        t = t * 10 / 1023        return tpopsize = 50 #种群的大小#用遗传算法求函数最大值:#f(x)=10*sin(5x)+7*cos(4x) x∈[0,10]chromlength = 10 #基因片段的长度pc = 0.6 #两个个体交叉的概率pm = 0.001; #基因突变的概率results = [[]]bestindividual = []bestfit = 0fitvalue = []tempop = [[]]pop = [[0, 1, 0, 1, 0, 1, 0, 1, 0, 1]  for i in range(popsize)]for i in range(100): #繁殖100代        objvalue = calobjvalue(pop) #计算目标函数值        fitvalue = calfitvalue(objvalue); #计算个体的适应值        [bestindividual, bestfit] = best(pop, fitvalue) #选出最好的个体和最好的函数值        results.append([bestfit,b2d(bestindividual)]) #每次繁殖,将最好的结果记录下来        selection(pop, fitvalue) #自然选择,淘汰掉一部分适应性低的个体        crossover(pop, pc) #交叉繁殖        mutation(pop, pc) #基因突变        results.sort()        print(results[-1]) #打印函数最大值和对应的def calfitvalue(objvalue):#转化为适应值,目标函数值越大越好,负值淘汰。    fitvalue = []    temp = 0.0    Cmin = 0;    for i in range(len(objvalue)):        if(objvalue+ Cmin > 0):            temp = Cmin + objvalueelse:            temp = 0.0        fitvalue.append(temp)    return fitvalueimport mathdef decodechrom(pop): #将种群的二进制基因转化为十进制(0,1023)    temp = [];    for i in range(len(pop)):        t = 0;        for j in range(10):            t += pop[j] * (math.pow(2, j))        temp.append(t)    return tempdef calobjvalue(pop): #计算目标函数值    temp1 = [];    objvalue = [];    temp1 = decodechrom(pop)    for i in range(len(temp1)):        x = temp1* 10 / 1023 #(0,1023)转化为 (0,10)        objvalue.append(10 * math.sin(5 * x) + 7 * math.cos(4 * x))    return objvalue #目标函数值objvalue[m] 与个体基因 pop[m] 对应 def best(pop, fitvalue): #找出适应函数值中最大值,和对应的个体        px = len(pop)        bestindividual = []        bestfit = fitvalue[0]        for i in range(1,px):                if(fitvalue> bestfit):                        bestfit = fitvaluebestindividual = popreturn [bestindividual, bestfit]import randomdef sum(fitvalue):    total = 0    for i in range(len(fitvalue)):        total += fitvaluereturn totaldef cumsum(fitvalue):    for i in range(len(fitvalue)):        t = 0;        j = 0;        while(j <= i):            t += fitvalue[j]            j = j + 1        fitvalue= t;def selection(pop, fitvalue): #自然选择(轮盘赌算法)        newfitvalue = []        totalfit = sum(fitvalue)        for i in range(len(fitvalue)):                newfitvalue.append(fitvalue/ totalfit)        cumsum(newfitvalue)        ms = [];        poplen = len(pop)        for i in range(poplen):                ms.append(random.random()) #random float list ms        ms.sort()        fitin = 0        newin = 0        newpop = pop        while newin < poplen:                if(ms[newin] < newfitvalue[fitin]):                        newpop[newin] = pop[fitin]                        newin = newin + 1                else:                        fitin = fitin + 1        pop = newpopimport randomdef crossover(pop, pc): #个体间交叉,实现基因交换    poplen = len(pop)    for i in range(poplen – 1):        if(random.random() < pc):            cpoint = random.randint(0,len(pop[0]))            temp1 = []            temp2 = []            temp1.extend(pop[0 : cpoint])            temp1.extend(pop[i+1][cpoint : len(pop)])            temp2.extend(pop[i+1][0 : cpoint])            temp2.extend(pop[cpoint : len(pop)])            pop= temp1            pop[i+1] = temp2import randomdef mutation(pop, pm): #基因突变    px = len(pop)    py = len(pop[0])        for i in range(px):        if(random.random() < pm):            mpoint = random.randint(0,py-1)            if(pop[mpoint] == 1):                pop[mpoint] = 0            else:                pop[mpoint] = 1

! ]( J9 j7 k( a: v7 K, Q# o- a/ f( Y8 \/ t* s

‘ P# c+ |( I” g( Q

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请联系我们举报,一经查实,本站将立刻删除。

发布者:全栈程序员-站长,转载请注明出处:https://javaforall.net/194305.html原文链接:https://javaforall.net

(0)
全栈程序员-站长的头像全栈程序员-站长


相关推荐

  • linux基本命令手册_linux常用命令详解

    linux基本命令手册_linux常用命令详解命令功能说明线上查询及帮助命令(2个)man查看命令帮助,命令的词典,更复杂的还有info,但不常用。help查看Linux内置命令的帮助,比如cd命令。文件和目录操作命令(18个)l

    2022年8月6日
    7
  • javascript邮箱正则表达式_email正则表达式

    javascript邮箱正则表达式_email正则表达式”^\s*\w+(?:\.{0,1}[\w-]+)@[a-zA-Z0-9]+(?:[-.][a-zA-Z0-9]+)\.[a-zA-Z]+\s*$”这个是一个企业级的程序里copy出来的。合法E-mail地址:必须包含一个并且只有一个符号“@”不允许出现“@.”或者.@允许“@”前的字符中出现“+”不允许“+”在最前面,或者“+@”正则表达式如下:^(\w+((-\w+)|(.\w+)))+\w+…

    2022年9月24日
    5
  • django配置文件详解_django实时读取日志

    django配置文件详解_django实时读取日志前言django框架的日志通过python内置的logging模块实现的,既可以记录自定义的一些信息描述,也可以记录系统运行中的一些对象数据,还可以记录包括堆栈跟踪、错误代码之类的详细信息。log

    2022年7月31日
    9
  • 软件测试用例设计 (一)等价类划分法「建议收藏」

    软件测试用例设计 (一)等价类划分法「建议收藏」软件测试对于软件的重要性不言而喻,是计算机类学生毕业后的一个重要从业方向之一。如果要从事软件测试,那么有些必备的技能还是要有的。比如,测试理论、测试工具、测试文档的编制。今天我们就来看看最最最重要的测试雷论:黑盒测试用例设计方法——等价类,可以说,这个不会,你的软件测试理论约等于0、目录1.为什么要掌握等价类用例设计方法2.等价类划分法是什么3.等价类划分法的设计步骤4.等价类划分实例走起步骤1:划分等价类步骤2:设计用例覆盖有效等价类步骤3:设计用例覆盖无效等价类

    2022年10月17日
    2
  • B样条曲线的一些基本性质[通俗易懂]

    B样条曲线的一些基本性质[通俗易懂]1.B样条曲线的节点(knotpoint)指的是将区间划分为一段一段的分段点。节点向量(knotvector)则是由多个节点组成的向量。2.B样条曲线的次数(degree)也就是基函数的次数,而阶数(oder)则是次数加1。3.若B样条曲线由n+1个控制点(从P0到Pn),有m+1个节点(从u0到um),阶数为k+1(次数为k),则必须满足m=n+k+1。4.B样条曲线的每个控制点对应一个基函数,所有控制点与对应的基函数的乘积求和可得到B样条曲线的函数表达式。5.B样条曲线具有局部支撑性。第i+

    2022年6月18日
    75
  • Mac里配置maven环境变量

    Mac里配置maven环境变量从windows转IOS还是有点难度的,就如环境变量来说吧,整整配置了一天啊。说实话网上教程很多,也写的很全,但不是每个人遇到的情况都一样,所以就有我这样的情况出现了,按照网上的教程配了好久,一直不好使。现在我就记录下来,避免以后忘记了。。。先说明下我的问题,我是在fishshell下编辑的profile文件,就是编辑完保存后就会一直报错,不是文件里面“=”不支持,就是git命令不好…

    2022年6月18日
    41

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

关注全栈程序员社区公众号