Android mtk_Android开发app

Android mtk_Android开发appstaticstructSET_PD_BLOCK_INFO_Timgsensor_pd_info_1920_1080={ .i4OffsetX =16,//xoffsetofPDarea .i4OffsetY =12,//yoffsetofPDarea .i4PitchX =16,//xpitch/widthofaPDblock .i4PitchY =16,//ypitch/heightofaPDblock .i

大家好,又见面了,我是你们的朋友全栈君。如果您正在找激活码,请点击查看最新教程,关注关注公众号 “全栈程序员社区” 获取激活教程,可能之前旧版本教程已经失效.最新Idea2022.1教程亲测有效,一键激活。

Jetbrains全系列IDE使用 1年只要46元 售后保障 童叟无欺

PDAF:Phase Detection Auto Focus

PDAF sensor的实现原理(SPC结构):
在这里插入图片描述
PDAF通过比较L/R PD pixel构成的两幅图像,PD算法会计算出当前的相位差,根据相位差和模组的PD calibration data,估算出像距,从而移动lens快速对焦,PDAF快速对焦的搜索范围[infinity,macro]主要来自于烧录的OTP中的AF段,此距离并未实际与物体的物理距离即转换后的DAC值。PDAF OTP中主要烧录以上的SPC(shield pixel calibration)用于补偿遮光后的亮度增益,DCC(defocus conversion coefficient)主要是用于将相位差转换为Lens移动的距离,DCC中数值是通用过PD Diff 与DAC的关系拟合一条曲线的斜率(即PDAF线性度斜率)

PD pixel types主要有以下三类,Dual PD、Super PD、Shield PD。
目前接触使用的都是Shield PD(像素点有一半会被遮挡),信噪比SNR一般是越大越好(S/N S表示摄像机在假设无噪声时的图像信号值,N表示摄像机本身产生的噪声值);Shield PD 信噪比SNR一般比较差,但是能支持大尺寸像素;
Dual PD指每一个像素底部的感光区域一分为二,在同一个像素内即可获得相位差,也称2PD,全像素双核对焦,PD点覆盖率100%;
Super PD相邻两个像素共用一个micor lens(微透镜用于提高感光度)得到相位差信息
pd dian
CMOS传感器的结构:1.微透镜 2.色彩滤镜 3.感光片(光电二极管)4.高速传输电路 (Mono sensor没有色彩滤镜,黑白)

SensorType:不同的类型主要是针对PD pixel和PD value是由sensor还是ISP处理;接触较多的Type 2 PDAF_SUPPORT_CAMSV

Sensor Type Character Porting guide
Type1 PD pixel corrected by sensor
PD value calculate by sensor
Type1 PDAF porting
Type2 PD pixel corrected by sensor
PD pixel output to ISP via VC
Type2 PDAF porting
Type3 PD pixel corrected by ISP
PD pixel extracted by ISP from raw image
PD pixel extracted by PDAF algo on ISP3.0
Type3 PDAF porting
Dual PD No need to correct PD pixel
PD pixel extracted by ISP, under mode 1
PD pixel output to ISP under mode 3
DualPD PDAF porting

MTK不同SensorType的总体处理流程:
pdaf flow

MTK PDAF Flow:
pdaf flow

vendor/mediatek/proprietary/custom/mt6853/hal/pd_buf_mgr/src/pd_buf_mgr.cpp MTK
vendor/mediatek/proprietary/custom/mt6853/hal/pd_buf_mgr/src/pd_buf_mgr_open.cpp 3rd party
vendor/mediatek/proprietary/hardware/mtkcam/aaa/source/common/hal3a/v3.0/HAL3AFlowCtrl.cpp
vendor/mediatek/proprietary/hardware/mtkcam/aaa/source/common/utils/pdtblgen/pdtblgen.cpp
vendor/mediatek/proprietary/hardware/mtkcam/aaa/source/isp_6s/af_assist_mgr.cpp
vendor/mediatek/proprietary/custom/mt6853/hal/pd_buf_mgr/src/pd_buf_mgr.cpp
vendor/mediatek/proprietary/custom/mt6853/hal/pd_buf_mgr/src/pd_buf_mgr/xxx_mipi_raw/pd_xxx_mipiraw.cpp
vendor/mediatek/proprietary/hardware/mtkcam/drv/src/mem/common/v2/cam_cal_drv.cpp
vendor/mediatek/proprietary/hardware/mtkcam/drv/src/mem/common/v2/cam_cal_helper.cpp
vendor/mediatek/proprietary/custom/common/hal/imgsensor_src/camera_calibration_cam_cal.cpp
kernel-4.14/drivers/misc/mediatek/cam_cal/src/common/v2/eeprom_driver.c

static struct SET_PD_BLOCK_INFO_T imgsensor_pd_info_1920_1080 =
{ 
   
	.i4OffsetX	= 16,   // x offset of PD area
	.i4OffsetY	= 12,   // y offset of PD area
	.i4PitchX	= 16,   // x pitch/width of a PD block
	.i4PitchY	= 16,   // y pitch/height of a PD block
	.i4PairNum	= 8,    // num of pairs L/R PD pixel within a PD block
	.i4SubBlkW	= 8,    // x interval of 1 pair L/R PD pixel within a PD block
	.i4SubBlkH	= 4,    // y interval of 1 pair L/R PD pixel within a PD block
	.i4BlockNumX = 120, // PD block number in X direction
	.i4BlockNumY = 67,  // PD block number in Y direction 
	.iMirrorFlip = 0,
	.i4PosR =	{ 
   
				{ 
   16,13}, { 
   24,13}, { 
   20,17}, { 
   28,17},
				{ 
   16,21}, { 
   24,21}, { 
   20,25}, { 
   28,25},
			 },
	.i4PosL =	{ 
   
				{ 
   17,13}, { 
   25,13}, { 
   21,17}, { 
   29,17},
				{ 
   17,21}, { 
   25,21}, { 
   21,25}, { 
   29,25},
			 },
    .i4Crop = { 
    { 
   0, 0}, { 
   0, 0}, { 
   1040, 960}, { 
   0, 0}, { 
   0, 0}, { 
   1040,960},{ 
   0, 0}, { 
   0, 0}, { 
   0, 0}, { 
   0, 0} },
};

(1) 前4个变量和L/R的坐标可直接从PD INI文档中获取
(2) i4PairNum指一个block中有几对L/R pixel
(3) i4SubBlkW 和 i4SubBlkH 分别对应PD INI文档中的 PD_DENSITY_X/Y
(4) i4BlockNumX 和 i4BlockNumY 分别对应PD INI文档中的 PD_BLOCK_NUM_X_Y
(5) iMirrorFlip 指出图方向与 模组厂 calibration出图方向的相对方向

pd_info都是从4000*3000 尺寸上操作的,原来值的计算方式是
i4BlockNumX = ( 4000 – 16 * 2 ) / 16 = 248
i4BlockNumY = ( 3000 – 12 * 2 ) / 16 = 186

由于1920*1080是crop后的,故i4BlockNumX 和 i4BlockNumY 是需要修改的 ,与otp中的是不一致的
i4BlockNumX = 1920 / 16 = 120
i4BlockNumY = 1080 / 16 = 67.5 = 67

i4Crop用于记录[Scenario][Crop] -> [x_crop][y_crop] RAW_OFFSET_X = 1040 RAW_OFFSET_Y = 960
1920*1080在驱动中用于配置SensorMode 6,应该前面一个{1040, 960}不用填,是SensorMode2
i4Crop = (4000 – 1040) / 2 (3000 – 960) / 2 = 1920 1080

vendor/mediatek/proprietary/custom/mt6853/hal/pd_buf_mgr/src/pd_buf_mgr/xxx_mipi_raw/pd_xxx_mipiraw.cpp

MBOOL PD_xxxMIPIRAW::IsSupport( SPDProfile_t &iPdProfile)
{ 
   

    if (( iPdProfile.i4SensorMode == 5) && ((iPdProfile.uImgXsz == 1920) && (iPdProfile.uImgYsz == 1080)))
	{ 
   
		m_PDBufXSz = 240;
		m_PDBufYSz = 536;
                if(m_PDBuf)
               { 
   
                    delete m_PDBuf;
                    m_PDBuf = nullptr;
               }
               m_PDBufSz  = m_PDBufXSz*m_PDBufYSz;
               m_PDBuf    = new uint16_t [m_PDBufSz];
		ret = MTRUE;
		AAA_LOGD("[1080P 60fps] is Support : i4SensorMode:%d w[%d] s[%d]\n", iPdProfile.i4SensorMode,iPdProfile.uImgXsz, iPdProfile.uImgYsz);
	}
	...
}

m_PDXSz代表每一行传送pixel num = PitchX / DensityX * BlockNumX = 16 / 8 * 120 = 240
m_PDYSz代表传送的行数line num = PitchY / DensityY * 2 * BlockNumY = 16 / 8 *2 *67 = 536

{ 
   //AF_NVRAM
    { 
    // i4HybridAFCoefs1[64]
         1, // [0] hybrid_default_param
         37, // [1] tracking_width
         38, // [2] tracking_height
         3, // [3] max_pd_win_x
         3, // [4] max_pd_win_y
         ...
               
{ 
   //PD_NVRAM_T
    { 
   //PD_CALIBRATION_DATA_T
        { 
   0},
        0,
    },//PD_CALIBRATION_DATA_T
    { 
   //PD_ALGO_TUNING_T
        //--------------------------------------------------------------------------------/
        // Section: PD Block Size
        // Description: Determine PD block width and height
        //
        // i4FocusPDSizeX (width)
        // i4FocusPDSizeY (height)
        // range: [0] 32 to (raw_width/x_density), [0] 24 to (raw_height/y_density)
        // default:
        // S5K3P8: SizeX=32, SizeY=24 (density_x=16, density_y=16)
        // OV13855: SizeX=32, SizeY=48 (density_x=16, density_y=8)
        // IMX258: SizeX=64, SizeY=24 (density_x=8, density_y=16)
        // IMX398: SizeX=64, SizeY=48 (density_x=8, y_density_y=8)
        // S5K2L8: SizeX=240, SizeY=96 (density_x=2, y_density_y=4)
        // constraints: must be a multiplier of 4
        // effect: A large block takes longer computation time than a small block.
        //--------------------------------------------------------------------------------/
        28,  // i4FocusPDSizeX
        32,  // i4FocusPDSizeY
        //--------------------------------------------------------------------------------/
        

i4FocusPDSizeY = RAW_HIGHT * tracking_height / 100 / max_pd_win_y / PD_DENSITY_Y
                             = 1080 * 38 / 100 / 3 / 4 = 34.2 = 32
i4FocusPDSizex = RAW_WIDTH * tracking_width / 100 / max_pd_win_x / PD_DENSITY_X
                             = 1920 * 37 / 100 / 3 / 8 = 29.6 = 28

static struct SENSOR_WINSIZE_INFO_STRUCT imgsensor_winsize_info[7] = { 
   
	{ 
   8032, 6032, 0,	  12, 8032, 6008, 4016, 3004,   8, 2, 4000, 3000, 0, 0, 4000, 3000}, //preview(4000 x 3000)
	{ 
   8032, 6032, 0,	  12, 8032, 6008, 4016, 3004,   8, 2, 4000, 3000, 0, 0, 4000, 3000}, //capture(4000 x 3000)
	{ 
   8032, 6032, 0,	  12, 8032, 6008, 4016, 3004,   8, 2, 4000, 3000, 0, 0, 4000, 3000}, // VIDEO (4000 x 3000)
	{ 
   8032, 6032, 0, 1568, 8032, 2896, 2008,  724, 364, 2, 1280,  720, 0, 0, 1280,  720}, // hight speed video (1280 x 720)
	{ 
   8032, 6032, 0,	  12, 8032, 6008, 4016, 3004,   8, 2, 4000, 3000, 0, 0, 4000, 3000}, // slim video (1280 x 720)
	{ 
   8032, 6032, 2080,   1932, 3872, 2168, 1936, 1084, 8, 2, 1920, 1080,0,  0, 1920, 1080}, // custom1 (1920x 1080)
	{ 
   8032, 6032, 0,	  14, 8032, 6004, 8032, 6004,  16, 2, 8000, 6000, 0, 0, 8000, 6000}, //remosaic (8000 x 6000)
};

8032 6032 sensor内部有效像素 crop → binning → crop 如果有还要小的尺寸还需要crop
为了保持中心一致 0 12 上下都裁剪 crop
8032-(0 * 2) 6032 -(12 * 2)= 8032 6008 再binning
4016 3004 继续上下crop
4016-(8 * 2)3004(2*2)= 4000 * 3000 最终输出 tgsize

static struct SENSOR_VC_INFO_STRUCT SENSOR_VC_INFO[4]=
{ 
   
	/* Preview mode setting */
	 { 
   0x02, //VC_Num
	  0x0a, //VC_PixelNum
	  0x00, //ModeSelect /* 0:auto 1:direct */
	  0x00, //EXPO_Ratio /* 1/1, 1/2, 1/4, 1/8 */
	  0x00, //0DValue /* 0D Value */
	  0x00, //RG_STATSMODE /* STATS divistion mode 0:16x16 1:8x8 2:4x4 3:1x1 */
	  0x00, 0x2B, 0x0FA0, 0x0BB8,	// VC0 image data
	  0x00, 0x00, 0x0000, 0x0000,	// VC1 MVHDR
	  0x01, 0x30, 0x026C, 0x05D0,   // VC2 PDAF
	  0x00, 0x00, 0x0000, 0x0000},	// VC3 
	/* Capture mode setting */ 
	/* Video mode setting */
	/* Custom1 mode setting */
	 { 
   0x02, //VC_Num
	  0x0a, //VC_PixelNum
	  0x00, //ModeSelect /* 0:auto 1:direct */
	  0x00, //EXPO_Ratio /* 1/1, 1/2, 1/4, 1/8 */
	  0x00, //0DValue /* 0D Value */
	  0x00, //RG_STATSMODE /* STATS divistion mode 0:16x16 1:8x8 2:4x4 3:1x1 */
	  0x00, 0x2B, 0x0780, 0x0438,	// VC0 image data
	  0x00, 0x00, 0x0000, 0x0000,	// VC1 MVHDR
	  0x01, 0x30, 0x012C, 0x0218,   // VC2 PDAF
	  0x00, 0x00, 0x0000, 0x0000},	// VC3 

};};

Type 2会使用VC(Virtual channel control),VC的主要作用就是将数据流的数据通过不同的通道分离给不同的流程。通过每一帧都是包含图像帧+PD 虚拟帧(将Bayer数据和PD数据按照MIPI协议打包)
图像帧(Image Data VC=0 DT=0x2B RAW10)
        0x0780 = 1920 0x0438 = 1080 ;
PD 虚拟帧(PDAF Data VC=1 DT=0x30 通过date type区分通道)
        0x012C = 120 * 2 * 10 / 8 = 300 //.i4BlockNumX = 120, // PD block number in X direction
        0x0218 = 67 * 4 * 2 = 536           //.i4BlockNumY = 67, // PD block number in Y direction

PDAF线性度测试:
ISO<200,对着菱形图20cm 位置下,在Confidence > 60的场景下抓取log,在log里查找PD Value与AF DAC,看他们是否是呈线性关系

插入一下OTP相关的知识

LCS Lens Shade Correction gridx gridy 垂直和网格大小,周围亮度不均匀,处理不好可能经算法会有竖条纹,光晕等
BLC BlackLevel Correction 黑电平校正 (没有做黑电平校正的的图会更亮,影响图像的对比度)
                          sensor输出的电压越高,电流越大,而sensor电路本算存在暗电流,导致没有光线输入时也
                          有一定的输出电压,所以需要把这一部分去掉,所有像素都减去一个校准值,raw10对应的OB
                          (Optical Black)一般为64,需要注意init setting中的寄存器修改
AWB Auto White Balance    RGB转成Bayer模式的图一般由(R Gr Gb B四个通道的值) ,AWB一般比较关注R/G B/G的值,
                          Gr Gb一般值都比较接近,R/G 变大时,意味着R gain减小,整幅图R分量少了,就会呈现泛绿泛蓝,
                          烧录的数据主要是当前模组和Golden模组(一批生产中较为平均的做基准)的R Gr Gb B的数据
版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请联系我们举报,一经查实,本站将立刻删除。

发布者:全栈程序员-站长,转载请注明出处:https://javaforall.net/196357.html原文链接:https://javaforall.net

(0)
全栈程序员-站长的头像全栈程序员-站长


相关推荐

  • 傅里叶分析之掐死教程(完整版)

    傅里叶分析之掐死教程(完整版)

    2021年11月21日
    44
  • 国内云计算厂商众生相:四大阵营十几家企业生存盘点

    国内云计算厂商众生相:四大阵营十几家企业生存盘点

    2021年7月1日
    128
  • IDEA热部署不生效解决方案

    IDEA热部署不生效解决方案今天尝试热部署,没想到弄了半天没反应,最后经查阅发现此问题,希望同样问题的这个没配置的去添加试下,希望能帮到你第一步pom文件引入坐标&lt;dependency&gt; &lt;groupId&gt;org.springframework.boot&lt;/groupId&gt; &lt;artifactId&gt;spring-boot-devtools…

    2022年6月3日
    315
  • linux之管道

    1.进程间通信概述进程是一个独立的资源分配单元,不同进程之间的资源是独立的,没有关联,不能在一个进程中直接访问另一个进程的资源。进程不是孤立的,不同的进程需要进行信息的交互和状态的传递等,因此需要

    2021年12月28日
    49
  • 视觉里程计Visual Odometry(VO)「建议收藏」

    视觉里程计Visual Odometry(VO)「建议收藏」视觉里程计(VisualOdometry,简称VO)是SLAM技术中非常关键的部分,主要侧重于计算机视觉算法.视觉里程计这个术语借鉴了汽车的车轮里程计的概念,还是挺贴切的。我们知道汽车的车轮里程计是用来测量车速、行驶距离的测量装置。它的原理可以简单的做如下理解:汽车的车轮直径是已知的,那么车轮的周长也可以计算出来,都是一个恒定的值。车轮上安装有一个“计数器”,车轮每转动一圈就记一次数字,两次计数之间的时间也是可以测量的,因此根据车轮的周长和两次计数时间差…

    2022年6月18日
    25
  • 树莓派自动连接蓝牙_树莓派能搜到wifi但是连不上

    树莓派自动连接蓝牙_树莓派能搜到wifi但是连不上将USB无线网卡插入树莓派任一USB接口,插上网线,接通电源;在个人电脑上通过ssh连接树莓派,默认帐号是pi,默认密码是raspberry(如何通过ssh连接树莓派,请自行网上查找,当然如果树莓派已

    2022年8月5日
    3

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

关注全栈程序员社区公众号