jetson nano安装pycuda

jetson nano安装pycudaJetPack4.4版本使用之前配置cuda的环境$sudonano~/.bashrcexportPATH=/usr/local/cuda-10.2/bin:$PATHexportLD_LIBRARY_PATH=/usr/local/cuda/lib64:$LD_LIBRARY_PATHexportCUDA_HOME=$CUDA_HOME:/usr/local/cuda-10.2$sudosource~/.bashrc$nvcc-V检测一下是否配置成功之后下载[p

大家好,又见面了,我是你们的朋友全栈君。如果您正在找激活码,请点击查看最新教程,关注关注公众号 “全栈程序员社区” 获取激活教程,可能之前旧版本教程已经失效.最新Idea2022.1教程亲测有效,一键激活。

Jetbrains全家桶1年46,售后保障稳定

JetPack4.4版本

配置cuda的环境

$ sudo nano ~/.bashrc
export PATH=/usr/local/cuda-10.2/bin:$PATH
export LD_LIBRARY_PATH=/usr/local/cuda/lib64:$LD_LIBRARY_PATH
export CUDA_HOME=$CUDA_HOME:/usr/local/cuda-10.2
$ sudo source ~/.bashrc
$ nvcc -V 检测一下是否配置成功

Jetbrains全家桶1年46,售后保障稳定

安装pycuda-2019

之后下载[pycuda-2019.1.2]

下载完之后解压
进入解压出来的文件

tar zxvf pycuda-2019.1.2.tar.gz    
cd pycuda-2019.1.2/  
python3 configure.py --cuda-root=/usr/local/cuda-10.2
sudo python3 setup.py install

出现这个就说明正在编译文件安装,等待一段时间后即可安装完成。
在这里插入图片描述
安装完出现:
在这里插入图片描述
就表明安装成功了。

但是使用的时候还得配置一下一些必要的东西不然会报错:?*

FileNotFoundError: [Errno 2] No such file or directory: ‘nvcc’

将nvcc的完整路径硬编码到Pycuda的compiler.py文件中的compile_plain()
中,大约在第 73 行的位置中加入下面段代码!

nvcc = '/usr/local/cuda/bin/'+nvcc

在这里插入图片描述

更新JetPack4.6版本

4.6版本也是cuda10.2版本的,cuda配置环境都一样

安装pycuda-2021

源码也可下载【pycuda-2021】
这是pycuda的github地址:https://github.com/inducer/pycuda

测试pycuda是否安装正确的时候会报错

Traceback (most recent call last):
  File "test.py", line 2, in <module>
    import pycuda.autoinit
  File "/usr/local/lib/python3.6/dist-packages/pycuda-2021.1-py3.6-linux-aarch64.egg/pycuda/autoinit.py", line 7, in <module>
    from pycuda.tools import make_default_context  # noqa: E402
  File "/usr/local/lib/python3.6/dist-packages/pycuda-2021.1-py3.6-linux-aarch64.egg/pycuda/tools.py", line 33, in <module>
    from pycuda.compyte.dtypes import (  # noqa: F401
ModuleNotFoundError: No module named 'pycuda.compyte'

解决方案

官方解决方案【链接
不想去看的话,直接下载这个链接的源码,同下步骤进行安装即可
https://pypi.org/project/pycuda/#files

tar zxvf pycuda-2021.1.tar.gz    
cd pycuda-2021.1/  
python3 configure.py --cuda-root=/usr/local/cuda-10.2
sudo python3 setup.py install

测试dome

接下来写个矩阵运算的小demo来测试是否能真正运行:

import numpy as np
import pycuda.autoinit
import pycuda.driver as cuda
from pycuda.compiler import SourceModule


mod = SourceModule(""" #define BLOCK_SIZE 16 typedef struct { int width; int height; int stride; int __padding; //为了和64位的elements指针对齐 float* elements; } Matrix; // 读取矩阵元素 __device__ float GetElement(const Matrix A, int row, int col) { return A.elements[row * A.stride + col]; } // 赋值矩阵元素 __device__ void SetElement(Matrix A, int row, int col, float value) { A.elements[row * A.stride + col] = value; } // 获取 16x16 的子矩阵 __device__ Matrix GetSubMatrix(Matrix A, int row, int col) { Matrix Asub; Asub.width = BLOCK_SIZE; Asub.height = BLOCK_SIZE; Asub.stride = A.stride; Asub.elements = &A.elements[A.stride * BLOCK_SIZE * row + BLOCK_SIZE * col]; return Asub; } __global__ void matrix_mul(Matrix *A, Matrix *B, Matrix *C) { int blockRow = blockIdx.y; int blockCol = blockIdx.x; int row = threadIdx.y; int col = threadIdx.x; Matrix Csub = GetSubMatrix(*C, blockRow, blockCol); // 每个线程通过累加Cvalue计算Csub的一个值 float Cvalue = 0; // 为了计算Csub遍历所有需要的Asub和Bsub for (int m = 0; m < (A->width / BLOCK_SIZE); ++m) { Matrix Asub = GetSubMatrix(*A, blockRow, m); Matrix Bsub = GetSubMatrix(*B, m, blockCol); __shared__ float As[BLOCK_SIZE][BLOCK_SIZE]; __shared__ float Bs[BLOCK_SIZE][BLOCK_SIZE]; As[row][col] = GetElement(Asub, row, col); Bs[row][col] = GetElement(Bsub, row, col); __syncthreads(); for (int e = 0; e < BLOCK_SIZE; ++e) Cvalue += As[row][e] * Bs[e][col]; __syncthreads(); } SetElement(Csub, row, col, Cvalue); } """)


class MatrixStruct(object):
    def __init__(self, array):
        self._cptr = None

        self.shape, self.dtype = array.shape, array.dtype
        self.width = np.int32(self.shape[1])
        self.height = np.int32(self.shape[0])
        self.stride = self.width
        self.elements = cuda.to_device(array)                      # 分配内存并拷贝数组数据至device,返回其地址

    def send_to_gpu(self):
        self._cptr = cuda.mem_alloc(self.nbytes())                 # 分配一个C结构体所占的内存
        cuda.memcpy_htod(int(self._cptr), self.width.tobytes())    # 拷贝数据至device,下同
        cuda.memcpy_htod(int(self._cptr)+4, self.height.tobytes())
        cuda.memcpy_htod(int(self._cptr)+8, self.stride.tobytes())
        cuda.memcpy_htod(int(self._cptr)+16, np.intp(int(self.elements)).tobytes())

    def get_from_gpu(self):
        return cuda.from_device(self.elements, self.shape, self.dtype)  # 从device取回数组数据
   
    def nbytes(self):
        return self.width.nbytes * 4 + np.intp(0).nbytes


a = np.random.randn(400,400).astype(np.float32)
b = np.random.randn(400,400).astype(np.float32)
c = np.zeros_like(a)

A = MatrixStruct(a)
B = MatrixStruct(b)
C = MatrixStruct(c)
A.send_to_gpu()
B.send_to_gpu()
C.send_to_gpu()

matrix_mul = mod.get_function("matrix_mul")
matrix_mul(A._cptr, B._cptr, C._cptr, block=(16,16,1), grid=(25,25))
result = C.get_from_gpu()
print(np.dot(a,b))
print(result)

出现下面矩阵运算的结果即可说明在jetson nano上安装的pycuda成功了,之后就可以配合tensorrt使用啦!
在这里插入图片描述

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请联系我们举报,一经查实,本站将立刻删除。

发布者:全栈程序员-站长,转载请注明出处:https://javaforall.net/203655.html原文链接:https://javaforall.net

(0)
全栈程序员-站长的头像全栈程序员-站长


相关推荐

  • 时序数据库 日志_mysql恢复数据库

    时序数据库 日志_mysql恢复数据库1.基础1.1时序数据的定义什么是时间序列数据(TimeSeriesData,TSD,以下简称时序)从定义上来说,就是一串按时间维度索引的数据。用描述性的语言来解释什么是时序数据,简单的说,就是这类数据描述了某个被测量的主体在一个时间范围内的每个时间点上的测量值。它普遍存在于IT基础设施、运维监控系统和物联网中。对时序数据进行建模的话,会包含三个重要部分,分别是:主体,时间点和测量值。套用这…

    2022年10月4日
    1
  • JSON C# Class Generator —由json字符串生成C#实体类的工具

    JSON C# Class Generator —由json字符串生成C#实体类的工具

    2022年4月2日
    91
  • mac idea 激活码[免费获取]

    (mac idea 激活码)本文适用于JetBrains家族所有ide,包括IntelliJidea,phpstorm,webstorm,pycharm,datagrip等。https://javaforall.net/100143.htmlIntelliJ2021最新激活注册码,破解教程可免费永久激活,亲测有效,上面是详细链接哦~M…

    2022年3月21日
    95
  • docker(11)Dockerfile 中的COPY与ADD 命令[通俗易懂]

    docker(11)Dockerfile 中的COPY与ADD 命令[通俗易懂]前言Dockerfile中提供了两个非常相似的命令COPY和ADD,本文尝试解释这两个命令的基本功能,以及其异同点,然后总结其各自适合的应用场景。Build上下文的概念在使用dock

    2022年7月31日
    5
  • 上位机软件开发入门

    上位机软件开发入门上位机是指:人可以直接发出操控命令的计算机,一般是PC,屏幕上显示各种信号变化(液压,水位,温度等)。下位机是直接控制设备获取设备状况的的计算机,一般是PLC/单片机之类的。上位机发出的命令首先给下位机,下位机再根据此命令解释成相应时序信号直接控制相应设备。下位机不时读取设备状态数据(一般模拟量),转化成数字信号反馈给上位机。上下位机都需要编程,都有专门的开发系统。

    2022年5月6日
    120
  • springboot集成Swagger2「建议收藏」

    springboot集成Swagger2「建议收藏」Swagger2简介 我们提供Restful接口的时候,API文档是尤为的重要,它承载着对接口的定义,描述等。它还是和API消费方沟通的重要工具。在实际情况中由于接口和文档存放的位置不同,我们很难及时的去维护文档。1.随项目自动生成强大RESTful API文档,减少工作量2.API文档与代码整合在一起,便于同步更新API说明3.页面测试功能来调试每个RESTful API…

    2022年6月13日
    26

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

关注全栈程序员社区公众号