jetson nano安装pycuda

jetson nano安装pycudaJetPack4.4版本使用之前配置cuda的环境$sudonano~/.bashrcexportPATH=/usr/local/cuda-10.2/bin:$PATHexportLD_LIBRARY_PATH=/usr/local/cuda/lib64:$LD_LIBRARY_PATHexportCUDA_HOME=$CUDA_HOME:/usr/local/cuda-10.2$sudosource~/.bashrc$nvcc-V检测一下是否配置成功之后下载[p

大家好,又见面了,我是你们的朋友全栈君。如果您正在找激活码,请点击查看最新教程,关注关注公众号 “全栈程序员社区” 获取激活教程,可能之前旧版本教程已经失效.最新Idea2022.1教程亲测有效,一键激活。

Jetbrains全家桶1年46,售后保障稳定

JetPack4.4版本

配置cuda的环境

$ sudo nano ~/.bashrc
export PATH=/usr/local/cuda-10.2/bin:$PATH
export LD_LIBRARY_PATH=/usr/local/cuda/lib64:$LD_LIBRARY_PATH
export CUDA_HOME=$CUDA_HOME:/usr/local/cuda-10.2
$ sudo source ~/.bashrc
$ nvcc -V 检测一下是否配置成功

Jetbrains全家桶1年46,售后保障稳定

安装pycuda-2019

之后下载[pycuda-2019.1.2]

下载完之后解压
进入解压出来的文件

tar zxvf pycuda-2019.1.2.tar.gz    
cd pycuda-2019.1.2/  
python3 configure.py --cuda-root=/usr/local/cuda-10.2
sudo python3 setup.py install

出现这个就说明正在编译文件安装,等待一段时间后即可安装完成。
在这里插入图片描述
安装完出现:
在这里插入图片描述
就表明安装成功了。

但是使用的时候还得配置一下一些必要的东西不然会报错:?*

FileNotFoundError: [Errno 2] No such file or directory: ‘nvcc’

将nvcc的完整路径硬编码到Pycuda的compiler.py文件中的compile_plain()
中,大约在第 73 行的位置中加入下面段代码!

nvcc = '/usr/local/cuda/bin/'+nvcc

在这里插入图片描述

更新JetPack4.6版本

4.6版本也是cuda10.2版本的,cuda配置环境都一样

安装pycuda-2021

源码也可下载【pycuda-2021】
这是pycuda的github地址:https://github.com/inducer/pycuda

测试pycuda是否安装正确的时候会报错

Traceback (most recent call last):
  File "test.py", line 2, in <module>
    import pycuda.autoinit
  File "/usr/local/lib/python3.6/dist-packages/pycuda-2021.1-py3.6-linux-aarch64.egg/pycuda/autoinit.py", line 7, in <module>
    from pycuda.tools import make_default_context  # noqa: E402
  File "/usr/local/lib/python3.6/dist-packages/pycuda-2021.1-py3.6-linux-aarch64.egg/pycuda/tools.py", line 33, in <module>
    from pycuda.compyte.dtypes import (  # noqa: F401
ModuleNotFoundError: No module named 'pycuda.compyte'

解决方案

官方解决方案【链接
不想去看的话,直接下载这个链接的源码,同下步骤进行安装即可
https://pypi.org/project/pycuda/#files

tar zxvf pycuda-2021.1.tar.gz    
cd pycuda-2021.1/  
python3 configure.py --cuda-root=/usr/local/cuda-10.2
sudo python3 setup.py install

测试dome

接下来写个矩阵运算的小demo来测试是否能真正运行:

import numpy as np
import pycuda.autoinit
import pycuda.driver as cuda
from pycuda.compiler import SourceModule


mod = SourceModule(""" #define BLOCK_SIZE 16 typedef struct { int width; int height; int stride; int __padding; //为了和64位的elements指针对齐 float* elements; } Matrix; // 读取矩阵元素 __device__ float GetElement(const Matrix A, int row, int col) { return A.elements[row * A.stride + col]; } // 赋值矩阵元素 __device__ void SetElement(Matrix A, int row, int col, float value) { A.elements[row * A.stride + col] = value; } // 获取 16x16 的子矩阵 __device__ Matrix GetSubMatrix(Matrix A, int row, int col) { Matrix Asub; Asub.width = BLOCK_SIZE; Asub.height = BLOCK_SIZE; Asub.stride = A.stride; Asub.elements = &A.elements[A.stride * BLOCK_SIZE * row + BLOCK_SIZE * col]; return Asub; } __global__ void matrix_mul(Matrix *A, Matrix *B, Matrix *C) { int blockRow = blockIdx.y; int blockCol = blockIdx.x; int row = threadIdx.y; int col = threadIdx.x; Matrix Csub = GetSubMatrix(*C, blockRow, blockCol); // 每个线程通过累加Cvalue计算Csub的一个值 float Cvalue = 0; // 为了计算Csub遍历所有需要的Asub和Bsub for (int m = 0; m < (A->width / BLOCK_SIZE); ++m) { Matrix Asub = GetSubMatrix(*A, blockRow, m); Matrix Bsub = GetSubMatrix(*B, m, blockCol); __shared__ float As[BLOCK_SIZE][BLOCK_SIZE]; __shared__ float Bs[BLOCK_SIZE][BLOCK_SIZE]; As[row][col] = GetElement(Asub, row, col); Bs[row][col] = GetElement(Bsub, row, col); __syncthreads(); for (int e = 0; e < BLOCK_SIZE; ++e) Cvalue += As[row][e] * Bs[e][col]; __syncthreads(); } SetElement(Csub, row, col, Cvalue); } """)


class MatrixStruct(object):
    def __init__(self, array):
        self._cptr = None

        self.shape, self.dtype = array.shape, array.dtype
        self.width = np.int32(self.shape[1])
        self.height = np.int32(self.shape[0])
        self.stride = self.width
        self.elements = cuda.to_device(array)                      # 分配内存并拷贝数组数据至device,返回其地址

    def send_to_gpu(self):
        self._cptr = cuda.mem_alloc(self.nbytes())                 # 分配一个C结构体所占的内存
        cuda.memcpy_htod(int(self._cptr), self.width.tobytes())    # 拷贝数据至device,下同
        cuda.memcpy_htod(int(self._cptr)+4, self.height.tobytes())
        cuda.memcpy_htod(int(self._cptr)+8, self.stride.tobytes())
        cuda.memcpy_htod(int(self._cptr)+16, np.intp(int(self.elements)).tobytes())

    def get_from_gpu(self):
        return cuda.from_device(self.elements, self.shape, self.dtype)  # 从device取回数组数据
   
    def nbytes(self):
        return self.width.nbytes * 4 + np.intp(0).nbytes


a = np.random.randn(400,400).astype(np.float32)
b = np.random.randn(400,400).astype(np.float32)
c = np.zeros_like(a)

A = MatrixStruct(a)
B = MatrixStruct(b)
C = MatrixStruct(c)
A.send_to_gpu()
B.send_to_gpu()
C.send_to_gpu()

matrix_mul = mod.get_function("matrix_mul")
matrix_mul(A._cptr, B._cptr, C._cptr, block=(16,16,1), grid=(25,25))
result = C.get_from_gpu()
print(np.dot(a,b))
print(result)

出现下面矩阵运算的结果即可说明在jetson nano上安装的pycuda成功了,之后就可以配合tensorrt使用啦!
在这里插入图片描述

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请联系我们举报,一经查实,本站将立刻删除。

发布者:全栈程序员-站长,转载请注明出处:https://javaforall.net/203655.html原文链接:https://javaforall.net

(0)
全栈程序员-站长的头像全栈程序员-站长


相关推荐

  • 探索衰老机制的中心环节_紫乌鸦刷新机制改了

    探索衰老机制的中心环节_紫乌鸦刷新机制改了前期准备:PC:win7X64vs2013 emwin相关:emwin5.42模拟器,emwin5.42英文手册 同一父窗口下两个控件的刷新不对父窗口进行刷新的前提下,指刷新widget1和widget2. 1.widget为 Framewin或WIndow如果两个widget为Framewin或WIndow类型,则graphic

    2022年10月14日
    3
  • web渗透测试工具大全_web安全攻防渗透测试实战指南 pdf

    web渗透测试工具大全_web安全攻防渗透测试实战指南 pdf一、渗透测试工具nmap,查看网站服务器开放的端口1、查看服务器上运行的服务$nmap-sVhack-test.com2、查看操作系统版本$nmap-Ohack-test.com二、使用Nikto来收集漏洞信息#官方网站:https://cirt.net/nikto2#wgethttps://cirt.net/nikto/nikto-2.1.5.

    2022年8月12日
    9
  • windbg调试dump文件_dump是什么文件夹

    windbg调试dump文件_dump是什么文件夹使用WinDbg分析Windowsdump文件

    2022年9月28日
    3
  • python 获取B站播放量计算的条件及……

    python 获取B站播放量计算的条件及……

    2021年11月10日
    37
  • MySQL创建数据库和创建数据表

    MySQL创建数据库和创建数据表MySQL创建数据库和创建数据表MySQL是最常用的数据库,在数据库操作中,基本都是增删改查操作,简称CRUD。在这之前,需要先安装好MySQL,然后创建好数据库、数据表、操作用户。一、数据库操作语言数据库在操作时,需要使用专门的数据库操作规则和语法,这个语法就是SQL(StructuredQueryLanguage)结构化查询语言。SQL的主要功能是和数据库…

    2022年7月24日
    11
  • 在Windows XP 上 架设 FTP服务器

    在Windows XP 上 架设 FTP服务器架设一台FTP服务器其实很简单。首先,要保证你的机器能上网,而且有不低于ADSL512Kbps的网络速度。其次,硬件性能要能满足你的需要。最后,需要安装FTP服务器端的软件,这类软件很多,可以使用微软的IIS(InternetInformationServer因特网信息服务系统),也可以使用专业软件。不同的软件提供的功能不同,适应的需求和操作系统也不同。一般来说,系统最低要求如下:CPU

    2022年7月21日
    14

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

关注全栈程序员社区公众号