garch模型的结果分析_管理学五力模型分析案例

garch模型的结果分析_管理学五力模型分析案例  readdatalibrary(quantmod)  #加载包getSymbols(‘^HSI’,from=’1989-12-01′,to=’2013-11-30′)  #从Yahoo网站下载恒生指数日价格数据dim(HSI)   #数据规模names(HSI)  #数据变量名称chartSeries(HSI,theme=’white’)  #画出价格与交易的时…

大家好,又见面了,我是你们的朋友全栈君。如果您正在找激活码,请点击查看最新教程,关注关注公众号 “全栈程序员社区” 获取激活教程,可能之前旧版本教程已经失效.最新Idea2022.1教程亲测有效,一键激活。

Jetbrains全家桶1年46,售后保障稳定

 

 read data

library(quantmod)  # 加载包
getSymbols('^HSI', from='1989-12-01',to='2013-11-30')  # 从Yahoo网站下载恒生指数日价格数据
dim(HSI)   # 数据规模
names(HSI)  # 数据变量名称
chartSeries(HSI,theme='white')  # 画出价格与交易的时序图

Jetbrains全家桶1年46,售后保障稳定

 

garch模型的结果分析_管理学五力模型分析案例

HSI <-read.table('HSI.txt')  # 或者从硬盘中读取恒生指数日价格数据
HSI <-as.xts(HSI)  # 将数据格式转化为xts格式

 

compute return series

ptd.HSI <-HSI$HSI.Adjusted   # 提取日收盘价信息
rtd.HSI <-diff(log(ptd.HSI))*100   # 计算日对数收益
rtd.HSI <-rtd.HSI[-1,]   # 删除一期缺失值
plot(rtd.HSI)   # 画出日收益序列的时序图

 

garch模型的结果分析_管理学五力模型分析案例GARCH模型案例分析

ptm.HSI <-to.monthly(HSI)$HSI.Adjusted    # 提取月收盘价信息
rtm.HSI <-diff(log(ptm.HSI))*100   # 计算月对数收益
rtm.HSI <-rtm.HSI[-1,]   # 删除一期缺失值
plot(rtm.HSI)   # 画出月收益序列的时序图

garch模型的结果分析_管理学五力模型分析案例

detach(package:quantmod)

 

ARCH效应检验

# rtm.HSI <- as.numeric(rtm.HSI)
ind.outsample <- sub(' ','',substr(index(rtm.HSI), 4, 8)) %in%'2013'  #设置样本外下标:2013年为样本外
ind.insample <-!ind.outsample   # 设置样本内下标:其余为样本内
rtm.insample <- rtm.HSI[ind.insample]
rtm.outsample <- rtm.HSI[ind.outsample]
Box.test(rtm.insample, lag=12,type='Ljung-Box')  # 月收益序列不存在自相关
Box.test(rtm.insample^2, lag=12,type='Ljung-Box')   # 平方月收益序列存在自相关

FinTS::ArchTest(x=rtm.insample,lags=12)  # 存在显著的ARCH效应

 

模型定阶

epst <- rtm.insample -mean(rtm.insample)   # 均值调整对数收益
par(mfrow=c(1,2))
acf(as.numeric(epst)^2, lag.max=20, main='平方序列')
pacf(as.numeric(epst)^2, lag.max=20,main='平方序列')  

 

garch模型的结果分析_管理学五力模型分析案例                    

 

建立GARCH类模型

library(fGarch)
GARCH.model_1 <- garchFit(~garch(1,1), data=rtm.insample,trace=FALSE)  # GARCH(1,1)-N模型
GARCH.model_2 <- garchFit(~garch(2,1), data=rtm.insample,trace=FALSE)   # GARCH(1,2)-N模型
GARCH.model_3 <- garchFit(~garch(1,1), data=rtm.insample,cond.dist='std', trace=FALSE)   #GARCH(1,1)-t模型
GARCH.model_4 <- garchFit(~garch(1,1), data=rtm.insample,cond.dist='sstd', trace=FALSE)  #GARCH(1,1)-st模型
GARCH.model_5 <- garchFit(~garch(1,1), data=rtm.insample,cond.dist='ged', trace=FALSE)   #GARCH(1,1)-GED模型
GARCH.model_6 <- garchFit(~garch(1,1), data=rtm.insample,cond.dist='sged', trace=FALSE)  #GARCH(1,1)-SGED模型

summary(GARCH.model_1)
summary(GARCH.model_3)

plot(GARCH.model_1)

提取GARCH类模型信息

vol_1 <-fBasics::volatility(GARCH.model_1)   # 提取GARCH(1,1)-N模型得到的波动率估计
sres_1 <- residuals(GARCH.model_1,standardize=TRUE)   # 提取GARCH(1,1)-N模型得到的标准化残差
vol_1.ts <- ts(vol_1, frequency=12, start=c(1990, 1))
sres_1.ts <- ts(sres_1, frequency=12, start=c(1990, 1))
par(mfcol=c(2,1))
plot(vol_1.ts, xlab='年', ylab='波动率')
plot(sres_1.ts, xlab='年', ylab='标准化残差')

garch模型的结果分析_管理学五力模型分析案例

 

模型检验

par(mfrow=c(2,2))
acf(sres_1, lag=24)
pacf(sres_1, lag=24)
acf(sres_1^2, lag=24)
pacf(sres_1^2, lag=24)

GARCH模型案例分析
garch模型的结果分析_管理学五力模型分析案例

par(mfrow=c(1,1))
qqnorm(sres_1)
qqline(sres_1)

 

模型预测

pred.model_1 <- predict(GARCH.model_1, n.ahead = 11, trace =FALSE, mse = 'cond', plot=FALSE)
pred.model_2 <- predict(GARCH.model_2, n.ahead = 11, trace =FALSE, mse = 'cond', plot=FALSE)
pred.model_3 <- predict(GARCH.model_3, n.ahead = 11, trace =FALSE, mse = 'cond', plot=FALSE)
pred.model_4 <- predict(GARCH.model_4, n.ahead = 11, trace =FALSE, mse = 'cond', plot=FALSE)
pred.model_5 <- predict(GARCH.model_5, n.ahead = 11, trace =FALSE, mse = 'cond', plot=FALSE)
pred.model_6 <- predict(GARCH.model_6, n.ahead = 11, trace =FALSE, mse = 'cond', plot=FALSE)

predVol_1 <-pred.model_1$standardDeviation
predVol_2 <- pred.model_2$standardDeviation
predVol_3 <- pred.model_3$standardDeviation
predVol_4 <- pred.model_4$standardDeviation
predVol_5 <- pred.model_5$standardDeviation
predVol_6 <- pred.model_6$standardDeviation
et <- abs(rtm.outsample - mean(rtm.outsample))
rtd.HSI.2013 <- rtd.HSI['2013']
rv <- sqrt(aggregate(rtd.HSI.2013^2,by=substr(index(rtd.HSI.2013), 1, 7), sum))

predVol <-round(rbind(predVol_1,predVol_2,predVol_3,predVol_4,predVol_5,predVol_6,
                      as.numeric(et), as.numeric(rv)), digits=3)
colnames(predVol) <- 1:11
rownames(predVol) <-c('GARCH(1,1)-N模型','GARCH(1,2)-N模型','GARCH(1,1)-t模型','GARCH(1,1)-st模型','GARCH(1,1)-GED模型','GARCH(1,1)-SGED模型','残差绝对值', '已实现波动')
print(predVol)
                        1     2     3     4     5     6     7     8     9    10    11
GARCH(1,1)-N模型    5.037 5.286 5.513 5.722 5.915 6.094 6.260 6.415 6.560 6.696 6.824
GARCH(1,2)-N模型    4.760 4.747 5.136 5.404 5.661 5.891 6.102 6.296 6.473 6.638 6.789
GARCH(1,1)-t模型    5.347 5.532 5.703 5.864 6.014 6.154 6.286 6.410 6.527 6.638 6.742
GARCH(1,1)-st模型   5.386 5.560 5.722 5.873 6.014 6.146 6.270 6.386 6.495 6.598 6.695
GARCH(1,1)-GED模型  5.168 5.374 5.565 5.741 5.906 6.059 6.203 6.338 6.464 6.583 6.695
GARCH(1,1)-SGED模型 5.229 5.423 5.601 5.767 5.920 6.063 6.197 6.322 6.439 6.548 6.651
残差绝对值          4.147 3.513 3.659 1.464 2.007 7.838 4.584 1.177 4.584 1.026 2.388
已实现波动          3.543 4.114 3.929 4.778 4.374 6.013 5.397 4.634 4.070 3.745 4.395

 

模型选择

cor(t(predVol))

 

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请联系我们举报,一经查实,本站将立刻删除。

发布者:全栈程序员-站长,转载请注明出处:https://javaforall.net/215556.html原文链接:https://javaforall.net

(0)
全栈程序员-站长的头像全栈程序员-站长


相关推荐

  • s3c2440中断体系

    s3c2440中断体系intmain(){while(1);return0;}

    2022年5月1日
    58
  • ajax的面试题_java中框架面试题

    ajax的面试题_java中框架面试题1:什么是ajax?ajax作用是什么?异步的javascript和xmlAJAX是一种用于创建快速动态网页的技术。ajax用来与后台交互2:原生jsajax请求有几个步骤?分别是什么//创建XMLHttpRequest对象varajax=newXMLHttpRequest();//规定请求的类型、URL以及是否异步处理请求。ajax.open(‘GET’,u…

    2022年8月28日
    0
  • :nth-child(n)

    :nth-child(n)

    2021年9月20日
    53
  • python标识符号_python标识符的组成元素

    python标识符号_python标识符的组成元素在Python里,标识符由字母、数字、下划线组成,但不能以数字开头。#Python中标识符区分大小写。#以下划线开头的标识符有特殊意义,以单下划线开头_foo的代表不能直接访问的类属性,需通过类提供的接口进行访问,不能用fromxxximport*而导入。##以双下划线开头的__foo代表类的私有成员,以双下划线开头和结尾的__foo__代表Python里特殊方法专用的标识,如__init__()代表类的构造函数。##Python可以同一行显示多.

    2022年9月9日
    0
  • 《Android应用开发揭秘》连载2

    《Android应用开发揭秘》连载2《Android应用开发揭秘》  书名:Android应用开发揭秘作者:杨丰盛出版社:机械工业出版社ISBN:9787111291954出版日期:2010年3月(1版2次)开本:16页码:515版次:1-2定价:69元豆瓣网讨论地址:http://www.douban.com/subject/4200822/China-pub预订地址:http://www.china-pub.

    2022年6月11日
    39
  • android定时器开发[通俗易懂]

    android定时器开发[通俗易懂]在android中,经常用到的定时器主要有以下几种实现:一、采用Handler与线程的sleep(long)方法二、采用Handler的postDelayed(Runnable,long)方法三、采用Handler与timer及TimerTask结合的方法。下面逐一介绍:一、采用Handle与线程的sleep(long)方法Handler主要用来处理接受到的消息。这只是最主要的方法,当…

    2022年7月25日
    8

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

关注全栈程序员社区公众号