garch模型的结果分析_管理学五力模型分析案例

garch模型的结果分析_管理学五力模型分析案例  readdatalibrary(quantmod)  #加载包getSymbols(‘^HSI’,from=’1989-12-01′,to=’2013-11-30′)  #从Yahoo网站下载恒生指数日价格数据dim(HSI)   #数据规模names(HSI)  #数据变量名称chartSeries(HSI,theme=’white’)  #画出价格与交易的时…

大家好,又见面了,我是你们的朋友全栈君。如果您正在找激活码,请点击查看最新教程,关注关注公众号 “全栈程序员社区” 获取激活教程,可能之前旧版本教程已经失效.最新Idea2022.1教程亲测有效,一键激活。

Jetbrains全家桶1年46,售后保障稳定

 

 read data

library(quantmod)  # 加载包
getSymbols('^HSI', from='1989-12-01',to='2013-11-30')  # 从Yahoo网站下载恒生指数日价格数据
dim(HSI)   # 数据规模
names(HSI)  # 数据变量名称
chartSeries(HSI,theme='white')  # 画出价格与交易的时序图

Jetbrains全家桶1年46,售后保障稳定

 

garch模型的结果分析_管理学五力模型分析案例

HSI <-read.table('HSI.txt')  # 或者从硬盘中读取恒生指数日价格数据
HSI <-as.xts(HSI)  # 将数据格式转化为xts格式

 

compute return series

ptd.HSI <-HSI$HSI.Adjusted   # 提取日收盘价信息
rtd.HSI <-diff(log(ptd.HSI))*100   # 计算日对数收益
rtd.HSI <-rtd.HSI[-1,]   # 删除一期缺失值
plot(rtd.HSI)   # 画出日收益序列的时序图

 

garch模型的结果分析_管理学五力模型分析案例GARCH模型案例分析

ptm.HSI <-to.monthly(HSI)$HSI.Adjusted    # 提取月收盘价信息
rtm.HSI <-diff(log(ptm.HSI))*100   # 计算月对数收益
rtm.HSI <-rtm.HSI[-1,]   # 删除一期缺失值
plot(rtm.HSI)   # 画出月收益序列的时序图

garch模型的结果分析_管理学五力模型分析案例

detach(package:quantmod)

 

ARCH效应检验

# rtm.HSI <- as.numeric(rtm.HSI)
ind.outsample <- sub(' ','',substr(index(rtm.HSI), 4, 8)) %in%'2013'  #设置样本外下标:2013年为样本外
ind.insample <-!ind.outsample   # 设置样本内下标:其余为样本内
rtm.insample <- rtm.HSI[ind.insample]
rtm.outsample <- rtm.HSI[ind.outsample]
Box.test(rtm.insample, lag=12,type='Ljung-Box')  # 月收益序列不存在自相关
Box.test(rtm.insample^2, lag=12,type='Ljung-Box')   # 平方月收益序列存在自相关

FinTS::ArchTest(x=rtm.insample,lags=12)  # 存在显著的ARCH效应

 

模型定阶

epst <- rtm.insample -mean(rtm.insample)   # 均值调整对数收益
par(mfrow=c(1,2))
acf(as.numeric(epst)^2, lag.max=20, main='平方序列')
pacf(as.numeric(epst)^2, lag.max=20,main='平方序列')  

 

garch模型的结果分析_管理学五力模型分析案例                    

 

建立GARCH类模型

library(fGarch)
GARCH.model_1 <- garchFit(~garch(1,1), data=rtm.insample,trace=FALSE)  # GARCH(1,1)-N模型
GARCH.model_2 <- garchFit(~garch(2,1), data=rtm.insample,trace=FALSE)   # GARCH(1,2)-N模型
GARCH.model_3 <- garchFit(~garch(1,1), data=rtm.insample,cond.dist='std', trace=FALSE)   #GARCH(1,1)-t模型
GARCH.model_4 <- garchFit(~garch(1,1), data=rtm.insample,cond.dist='sstd', trace=FALSE)  #GARCH(1,1)-st模型
GARCH.model_5 <- garchFit(~garch(1,1), data=rtm.insample,cond.dist='ged', trace=FALSE)   #GARCH(1,1)-GED模型
GARCH.model_6 <- garchFit(~garch(1,1), data=rtm.insample,cond.dist='sged', trace=FALSE)  #GARCH(1,1)-SGED模型

summary(GARCH.model_1)
summary(GARCH.model_3)

plot(GARCH.model_1)

提取GARCH类模型信息

vol_1 <-fBasics::volatility(GARCH.model_1)   # 提取GARCH(1,1)-N模型得到的波动率估计
sres_1 <- residuals(GARCH.model_1,standardize=TRUE)   # 提取GARCH(1,1)-N模型得到的标准化残差
vol_1.ts <- ts(vol_1, frequency=12, start=c(1990, 1))
sres_1.ts <- ts(sres_1, frequency=12, start=c(1990, 1))
par(mfcol=c(2,1))
plot(vol_1.ts, xlab='年', ylab='波动率')
plot(sres_1.ts, xlab='年', ylab='标准化残差')

garch模型的结果分析_管理学五力模型分析案例

 

模型检验

par(mfrow=c(2,2))
acf(sres_1, lag=24)
pacf(sres_1, lag=24)
acf(sres_1^2, lag=24)
pacf(sres_1^2, lag=24)

GARCH模型案例分析
garch模型的结果分析_管理学五力模型分析案例

par(mfrow=c(1,1))
qqnorm(sres_1)
qqline(sres_1)

 

模型预测

pred.model_1 <- predict(GARCH.model_1, n.ahead = 11, trace =FALSE, mse = 'cond', plot=FALSE)
pred.model_2 <- predict(GARCH.model_2, n.ahead = 11, trace =FALSE, mse = 'cond', plot=FALSE)
pred.model_3 <- predict(GARCH.model_3, n.ahead = 11, trace =FALSE, mse = 'cond', plot=FALSE)
pred.model_4 <- predict(GARCH.model_4, n.ahead = 11, trace =FALSE, mse = 'cond', plot=FALSE)
pred.model_5 <- predict(GARCH.model_5, n.ahead = 11, trace =FALSE, mse = 'cond', plot=FALSE)
pred.model_6 <- predict(GARCH.model_6, n.ahead = 11, trace =FALSE, mse = 'cond', plot=FALSE)

predVol_1 <-pred.model_1$standardDeviation
predVol_2 <- pred.model_2$standardDeviation
predVol_3 <- pred.model_3$standardDeviation
predVol_4 <- pred.model_4$standardDeviation
predVol_5 <- pred.model_5$standardDeviation
predVol_6 <- pred.model_6$standardDeviation
et <- abs(rtm.outsample - mean(rtm.outsample))
rtd.HSI.2013 <- rtd.HSI['2013']
rv <- sqrt(aggregate(rtd.HSI.2013^2,by=substr(index(rtd.HSI.2013), 1, 7), sum))

predVol <-round(rbind(predVol_1,predVol_2,predVol_3,predVol_4,predVol_5,predVol_6,
                      as.numeric(et), as.numeric(rv)), digits=3)
colnames(predVol) <- 1:11
rownames(predVol) <-c('GARCH(1,1)-N模型','GARCH(1,2)-N模型','GARCH(1,1)-t模型','GARCH(1,1)-st模型','GARCH(1,1)-GED模型','GARCH(1,1)-SGED模型','残差绝对值', '已实现波动')
print(predVol)
                        1     2     3     4     5     6     7     8     9    10    11
GARCH(1,1)-N模型    5.037 5.286 5.513 5.722 5.915 6.094 6.260 6.415 6.560 6.696 6.824
GARCH(1,2)-N模型    4.760 4.747 5.136 5.404 5.661 5.891 6.102 6.296 6.473 6.638 6.789
GARCH(1,1)-t模型    5.347 5.532 5.703 5.864 6.014 6.154 6.286 6.410 6.527 6.638 6.742
GARCH(1,1)-st模型   5.386 5.560 5.722 5.873 6.014 6.146 6.270 6.386 6.495 6.598 6.695
GARCH(1,1)-GED模型  5.168 5.374 5.565 5.741 5.906 6.059 6.203 6.338 6.464 6.583 6.695
GARCH(1,1)-SGED模型 5.229 5.423 5.601 5.767 5.920 6.063 6.197 6.322 6.439 6.548 6.651
残差绝对值          4.147 3.513 3.659 1.464 2.007 7.838 4.584 1.177 4.584 1.026 2.388
已实现波动          3.543 4.114 3.929 4.778 4.374 6.013 5.397 4.634 4.070 3.745 4.395

 

模型选择

cor(t(predVol))

 

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请联系我们举报,一经查实,本站将立刻删除。

发布者:全栈程序员-站长,转载请注明出处:https://javaforall.net/215556.html原文链接:https://javaforall.net

(0)
全栈程序员-站长的头像全栈程序员-站长


相关推荐

  • linux安装pycharm详细步骤[通俗易懂]

    linux安装pycharm详细步骤[通俗易懂]一、用xftp远程根据把解压后的安装包文件上传到指定目录/opt/module/。然后,cd/opt/pycharm-community-linux-2018.1.4/bin/,执行以下代码赋予pycharm.sh执行权限[atguigu@hadoop101bin]$chmodu+xpycharm.sh最后,执行$shpycharm.sh启动pycharm[atguigu@hadoop101bin]$pycharm.shStartupError:Unab…

    2022年8月25日
    9
  • 10分钟拿下 HashMap「建议收藏」

    10分钟拿下 HashMap「建议收藏」请相信我,你一定会更优秀!文章目录:1、什么是HashMap?什么时候选择HashMap?2、HashMap数据结构及其工作原理?2.1数据结构2.2工作原理3、HashMap和HashTable的异同?4、如何优化HashMap?1、什么是HashMap?什么时候选择HashMap?说到容器,你肯定会想到Java中对象存储容器还有Arr…

    2022年4月19日
    38
  • 【ArcGIS Pro微课1000例】0016:ArcGIS Pro 2.8浮雕效果地图制图案例教程[通俗易懂]

    【ArcGIS Pro微课1000例】0016:ArcGIS Pro 2.8浮雕效果地图制图案例教程[通俗易懂]ArcGISPro制作地图时可以制作出很多很炫的效果,比如地图阴影、地图晕渲效果、浮雕效果、三维效果等等。本实验讲解在ArcGISPro2.8中制作浮雕效果地图,效果如下所示:【参考阅读】:ArcGIS实验教程——实验四十四:ArcGIS地图浮雕效果制作完整案例教程1.加载矢量数据加载实验数据包data16.rar中的秦安县乡镇矢量数据:2.缓冲区分析点击【分析】选项卡,点击【缓冲区】。输入要素选择秦安县乡镇数据,选择输出要素路径,线性单位输入-0.4,单位为千米,侧类型选择.

    2025年9月15日
    6
  • UDP协议编程_udp c语言

    UDP协议编程_udp c语言UDP编程与Socket文章目录UDP编程与SocketUDP服务端编程练习–UDP版本群聊UDP协议的应用相关测试命令windows查找udp是否启动端口:netstart-anpudp|find”9999″netstart-anbpudp|findstr9999linux下发给服务端数据echo”123abc”|nc-u172.0.0….

    2025年10月3日
    3
  • fastDB_最近使用

    fastDB_最近使用fastdb的官网fastdb怎么在Linux上面安装?$su-$cd/usr/local/src$wgethttp://www.garret.ru/fastdb-3.76.tar

    2022年8月2日
    10
  • dede中弹出框函数function ShowMsg

    dede中弹出框函数function ShowMsg

    2021年9月25日
    42

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

关注全栈程序员社区公众号