garch模型的结果分析_管理学五力模型分析案例

garch模型的结果分析_管理学五力模型分析案例  readdatalibrary(quantmod)  #加载包getSymbols(‘^HSI’,from=’1989-12-01′,to=’2013-11-30′)  #从Yahoo网站下载恒生指数日价格数据dim(HSI)   #数据规模names(HSI)  #数据变量名称chartSeries(HSI,theme=’white’)  #画出价格与交易的时…

大家好,又见面了,我是你们的朋友全栈君。如果您正在找激活码,请点击查看最新教程,关注关注公众号 “全栈程序员社区” 获取激活教程,可能之前旧版本教程已经失效.最新Idea2022.1教程亲测有效,一键激活。

Jetbrains全家桶1年46,售后保障稳定

 

 read data

library(quantmod)  # 加载包
getSymbols('^HSI', from='1989-12-01',to='2013-11-30')  # 从Yahoo网站下载恒生指数日价格数据
dim(HSI)   # 数据规模
names(HSI)  # 数据变量名称
chartSeries(HSI,theme='white')  # 画出价格与交易的时序图

Jetbrains全家桶1年46,售后保障稳定

 

garch模型的结果分析_管理学五力模型分析案例

HSI <-read.table('HSI.txt')  # 或者从硬盘中读取恒生指数日价格数据
HSI <-as.xts(HSI)  # 将数据格式转化为xts格式

 

compute return series

ptd.HSI <-HSI$HSI.Adjusted   # 提取日收盘价信息
rtd.HSI <-diff(log(ptd.HSI))*100   # 计算日对数收益
rtd.HSI <-rtd.HSI[-1,]   # 删除一期缺失值
plot(rtd.HSI)   # 画出日收益序列的时序图

 

garch模型的结果分析_管理学五力模型分析案例GARCH模型案例分析

ptm.HSI <-to.monthly(HSI)$HSI.Adjusted    # 提取月收盘价信息
rtm.HSI <-diff(log(ptm.HSI))*100   # 计算月对数收益
rtm.HSI <-rtm.HSI[-1,]   # 删除一期缺失值
plot(rtm.HSI)   # 画出月收益序列的时序图

garch模型的结果分析_管理学五力模型分析案例

detach(package:quantmod)

 

ARCH效应检验

# rtm.HSI <- as.numeric(rtm.HSI)
ind.outsample <- sub(' ','',substr(index(rtm.HSI), 4, 8)) %in%'2013'  #设置样本外下标:2013年为样本外
ind.insample <-!ind.outsample   # 设置样本内下标:其余为样本内
rtm.insample <- rtm.HSI[ind.insample]
rtm.outsample <- rtm.HSI[ind.outsample]
Box.test(rtm.insample, lag=12,type='Ljung-Box')  # 月收益序列不存在自相关
Box.test(rtm.insample^2, lag=12,type='Ljung-Box')   # 平方月收益序列存在自相关

FinTS::ArchTest(x=rtm.insample,lags=12)  # 存在显著的ARCH效应

 

模型定阶

epst <- rtm.insample -mean(rtm.insample)   # 均值调整对数收益
par(mfrow=c(1,2))
acf(as.numeric(epst)^2, lag.max=20, main='平方序列')
pacf(as.numeric(epst)^2, lag.max=20,main='平方序列')  

 

garch模型的结果分析_管理学五力模型分析案例                    

 

建立GARCH类模型

library(fGarch)
GARCH.model_1 <- garchFit(~garch(1,1), data=rtm.insample,trace=FALSE)  # GARCH(1,1)-N模型
GARCH.model_2 <- garchFit(~garch(2,1), data=rtm.insample,trace=FALSE)   # GARCH(1,2)-N模型
GARCH.model_3 <- garchFit(~garch(1,1), data=rtm.insample,cond.dist='std', trace=FALSE)   #GARCH(1,1)-t模型
GARCH.model_4 <- garchFit(~garch(1,1), data=rtm.insample,cond.dist='sstd', trace=FALSE)  #GARCH(1,1)-st模型
GARCH.model_5 <- garchFit(~garch(1,1), data=rtm.insample,cond.dist='ged', trace=FALSE)   #GARCH(1,1)-GED模型
GARCH.model_6 <- garchFit(~garch(1,1), data=rtm.insample,cond.dist='sged', trace=FALSE)  #GARCH(1,1)-SGED模型

summary(GARCH.model_1)
summary(GARCH.model_3)

plot(GARCH.model_1)

提取GARCH类模型信息

vol_1 <-fBasics::volatility(GARCH.model_1)   # 提取GARCH(1,1)-N模型得到的波动率估计
sres_1 <- residuals(GARCH.model_1,standardize=TRUE)   # 提取GARCH(1,1)-N模型得到的标准化残差
vol_1.ts <- ts(vol_1, frequency=12, start=c(1990, 1))
sres_1.ts <- ts(sres_1, frequency=12, start=c(1990, 1))
par(mfcol=c(2,1))
plot(vol_1.ts, xlab='年', ylab='波动率')
plot(sres_1.ts, xlab='年', ylab='标准化残差')

garch模型的结果分析_管理学五力模型分析案例

 

模型检验

par(mfrow=c(2,2))
acf(sres_1, lag=24)
pacf(sres_1, lag=24)
acf(sres_1^2, lag=24)
pacf(sres_1^2, lag=24)

GARCH模型案例分析
garch模型的结果分析_管理学五力模型分析案例

par(mfrow=c(1,1))
qqnorm(sres_1)
qqline(sres_1)

 

模型预测

pred.model_1 <- predict(GARCH.model_1, n.ahead = 11, trace =FALSE, mse = 'cond', plot=FALSE)
pred.model_2 <- predict(GARCH.model_2, n.ahead = 11, trace =FALSE, mse = 'cond', plot=FALSE)
pred.model_3 <- predict(GARCH.model_3, n.ahead = 11, trace =FALSE, mse = 'cond', plot=FALSE)
pred.model_4 <- predict(GARCH.model_4, n.ahead = 11, trace =FALSE, mse = 'cond', plot=FALSE)
pred.model_5 <- predict(GARCH.model_5, n.ahead = 11, trace =FALSE, mse = 'cond', plot=FALSE)
pred.model_6 <- predict(GARCH.model_6, n.ahead = 11, trace =FALSE, mse = 'cond', plot=FALSE)

predVol_1 <-pred.model_1$standardDeviation
predVol_2 <- pred.model_2$standardDeviation
predVol_3 <- pred.model_3$standardDeviation
predVol_4 <- pred.model_4$standardDeviation
predVol_5 <- pred.model_5$standardDeviation
predVol_6 <- pred.model_6$standardDeviation
et <- abs(rtm.outsample - mean(rtm.outsample))
rtd.HSI.2013 <- rtd.HSI['2013']
rv <- sqrt(aggregate(rtd.HSI.2013^2,by=substr(index(rtd.HSI.2013), 1, 7), sum))

predVol <-round(rbind(predVol_1,predVol_2,predVol_3,predVol_4,predVol_5,predVol_6,
                      as.numeric(et), as.numeric(rv)), digits=3)
colnames(predVol) <- 1:11
rownames(predVol) <-c('GARCH(1,1)-N模型','GARCH(1,2)-N模型','GARCH(1,1)-t模型','GARCH(1,1)-st模型','GARCH(1,1)-GED模型','GARCH(1,1)-SGED模型','残差绝对值', '已实现波动')
print(predVol)
                        1     2     3     4     5     6     7     8     9    10    11
GARCH(1,1)-N模型    5.037 5.286 5.513 5.722 5.915 6.094 6.260 6.415 6.560 6.696 6.824
GARCH(1,2)-N模型    4.760 4.747 5.136 5.404 5.661 5.891 6.102 6.296 6.473 6.638 6.789
GARCH(1,1)-t模型    5.347 5.532 5.703 5.864 6.014 6.154 6.286 6.410 6.527 6.638 6.742
GARCH(1,1)-st模型   5.386 5.560 5.722 5.873 6.014 6.146 6.270 6.386 6.495 6.598 6.695
GARCH(1,1)-GED模型  5.168 5.374 5.565 5.741 5.906 6.059 6.203 6.338 6.464 6.583 6.695
GARCH(1,1)-SGED模型 5.229 5.423 5.601 5.767 5.920 6.063 6.197 6.322 6.439 6.548 6.651
残差绝对值          4.147 3.513 3.659 1.464 2.007 7.838 4.584 1.177 4.584 1.026 2.388
已实现波动          3.543 4.114 3.929 4.778 4.374 6.013 5.397 4.634 4.070 3.745 4.395

 

模型选择

cor(t(predVol))

 

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请联系我们举报,一经查实,本站将立刻删除。

发布者:全栈程序员-站长,转载请注明出处:https://javaforall.net/215556.html原文链接:https://javaforall.net

(0)
全栈程序员-站长的头像全栈程序员-站长


相关推荐

  • pycharm无法连接服务器_pycharm部署项目到服务器

    pycharm无法连接服务器_pycharm部署项目到服务器Pycharm连接服务器Pycharm连接服务器是最为常用的内容,本文记录了Pycharm连接服务器的方法。BlueStragglers分享技术成长的乐趣目录Pycharm连接服务器1.操作步骤1.1创建连接1.2新建项目1.3运行配置2.常见问题2.1不显示Package1.操作步骤1.1创建连接首先,需要创建连接。进入Tools→Deployment→Configuration,打开配置页面。在Deployment页面的Connection

    2022年8月29日
    5
  • 菜鸟也疯狂,易语言自绘控件__进度条、滑块条[通俗易懂]

    菜鸟也疯狂,易语言自绘控件__进度条、滑块条[通俗易懂]进度条的自绘,关键的是用GetWindowLong得到一个进度条的结构:.版本2.数据类型进度条结构   .成员hWnd,整数型,,,进度条窗口句柄   .成员dwStyle,整数型,,,进度条窗口样式   .成员iMin,整数型,,,最小最大进度   .成员iMax,整数型,,,当前进度值

    2022年7月13日
    20
  • matlab中的ezplot函数

    matlab中的ezplot函数随时随地阅读更多技术实战干货,获取项目源码、学习资料,请关注源代码社区公众号(ydmsq666)一个容易使用的绘图函数语法ezplot(f)ezplot(f,[min,max])ezplot(f,[xmin,xmax,ymin,ymax])ezplot(x,y)ezplot(x,y,[tmin…

    2022年6月19日
    47
  • 配置系统初始化失败0 x84b10001当在Windows上安装SQL Server

    配置系统初始化失败0 x84b10001当在Windows上安装SQL Server为了修复这个错误我们必须修改机器。配置文件。我们需要删除的配置部分包含所有的WindowsCommunicationFoundation(WCF)ServiceModel配置元素。我至今仍不明白为什么我们需要删除这部分错误消息消失。有两种方法,你可以试着解决这个问题。方法一在此方法中,我们将修改机器。配置文件。去C:\WINDOWS\Microsoft.NET\

    2025年10月21日
    5
  • 电商网站测试要点_电商项目测试点

    电商网站测试要点_电商项目测试点电商网站测试总结:总体按照两种模式进行划分总结:1.按照测试类型2.按照电子商务网站的系统架构 1.按照测试类型来划分 1.兼容性  1.1主要是在浏览器兼容(360浏览器IE6IE8浏览器)  1.2.操作系统,主要体现在操作系统兼容(xpwin2003win2007) 2.UI测试 2.1检查连接是否正确 2.2是否有文字错误信息 2.3产品…

    2022年10月1日
    6
  • Latex数学公式表[通俗易懂]

    Latex数学公式表[通俗易懂]Latex的两种公式模式:行间(inline)模式:即在正文中插入数学内容。行间公式用$…$独立(display)模式:独立成行,可以有或没有编号。无编号用\[…\]

    2022年6月15日
    32

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

关注全栈程序员社区公众号