pandas 0.23.4 :’pd.ewma’没有这个模块,改用`Series.ewm` 或 降低版本到 pandas 0.21.0

pandas 0.23.4 :’pd.ewma’没有这个模块,改用`Series.ewm` 或 降低版本到 pandas 0.21.0问题:在进行画出指数平滑移动平均线,遇到如下问题:#pd.ewma(com=None,span=one)#指数平均线。com:数据;span:时间间隔AttributeError:module’pandas’hasnoattribute’ewma’解决办法:在pandas0.23.4版本中,已经不存在这种方法,回退到之前版本pandas0.21.0就一切完美…

大家好,又见面了,我是你们的朋友全栈君。如果您正在找激活码,请点击查看最新教程,关注关注公众号 “全栈程序员社区” 获取激活教程,可能之前旧版本教程已经失效.最新Idea2022.1教程亲测有效,一键激活。

Jetbrains全家桶1年46,售后保障稳定

问题:

在进行画出指数平滑移动平均线,遇到如下问题:

# pd.ewma(com=None, span=one)  # 指数平均线。com:数据;span:时间间隔

AttributeError: module 'pandas' has no attribute 'ewma'

Jetbrains全家桶1年46,售后保障稳定

解决办法:

方法一:
换用下面的方法

# Series.ewm(com=None, span=None, halflife=None, alpha=None, min_periods=0, freq=None, adjust=True, ignore_na=False, axis=0)
# com : float, optional
# Specify decay in terms of center of mass, \(\alpha = 1 / (1 + com),\text{ for } com \geq 0\)
# span : float, optional
# Specify decay in terms of span, \(\alpha = 2 / (span + 1),\text{ for } span \geq 1\)
# halflife : float, optional
# Specify decay in terms of half-life, \(\alpha = 1 - exp(log(0.5) / halflife),\text{ for } halflife > 0\)
# alpha : float, optional
# Specify smoothing factor \(\alpha\) directly, \(0 < \alpha \leq 1\)
# New in version 0.18.0.
# min_periods : int, default 0
# Minimum number of observations in window required to have a value (otherwise result is NA).
# freq : None or string alias / date offset object, default=None (DEPRECATED)
# Frequency to conform to before computing statistic
# adjust : boolean, default True
# Divide by decaying adjustment factor in beginning periods to account for imbalance in relative weightings (viewing EWMA as a moving average)
# ignore_na : boolean, default False
# Ignore missing values when calculating weights; specify True to reproduce pre-0.15.0 behavior

stock_day["close"].ewm(span=30).mean().plot()

方法二:
pandas 0.23.4版本中,已经不存在这种方法,回退到之前版本pandas 0.21.0就一切完美

pip install pandas==0.21

实例:

# 简单移动平均线(SMA),又称“算数移动平均线”,是指特定期间的收盘价进行平均化
# 例:5日的均线  SMA=(C1+ C2 + C3 + C4 + C5) / 5  # Cn为数据中第n天的数

# 计算移动平均线,对每天的股票的收盘价进行计算 close指标
# pd.rolling_mean(data, window=5)  # 这种方法已经淘汰了
data.rolling(window=n).mean().plot()  # window=n n日的平均数
# 加权移动平均线(WMA):为了提高最近股票(收盘价)数据的影响,防止被平均
# 1) 末日加权移动平均线:
MA(N) = (C1+ C2 + C3 + C4 + ... + Cn *2) / (n+1)

# 2) 线性加权移动平均线(给的权重比例太大,导致最近的时间序列数据影响过大,一般不选择):
MA(N) = (C1+ C2 * 2 + C3 * 3 + C4 * 4 + ... + Cn * n) / (1 + 2 + ... + n)

# 3) 指数平滑移动平均线(EWMA):
# 提高最近的数据的比重,不存在给的过大;
# 比重都是小数,所有天书的比重加起来等于1
y=[2 * x + (N - 1) * y' ]/ (N + 1)  # x:当天的价格;N:第几天;y':上一次的EWMA结果

# pd.ewma(com=None, span=one)  # 指数平均线。com:数据;span:时间间隔
# 股票时间序列数据处理
stock_day = pd.read_csv("./data/stock_day/stock_day.csv")
stock_day.sort_index()

stock_day["index"] = [i for i in range(stock_day.shape[0])]
val = stock_day[["index", "open", "close", "high", "low"]].values

fig, axes = plt.subplots(nrows=1, ncols=1, figsize=(20,8), dpi=80)
# K线图
candlestick_ochl(axes, val, width=0.2, colorup="r", colordown="g")

# 计算简单移动平均线,对每天的股票的收盘价进行计算 close指标
# pd.rolling_mean(stock_day["close"], window=5)  # 这种方法在pandas 0.23.4 已经淘汰了
# stock_day["close"].rolling(window=5).mean().plot()
# stock_day["close"].rolling(window=10).mean().plot()
# stock_day["close"].rolling(window=30).mean().plot()
# stock_day["close"].rolling(window=60).mean().plot()
# stock_day["close"].rolling(window=120).mean().plot()

# 画出指数平滑移动平均线
# 方法一:
stock_day["close"].ewm(span=10).mean().plot()
# 方法二:pandas 0.21.0及以下版本的使用方法
#  pd.ewma(stock_day["close"], span=10).plot()

plt.show()

在这里插入图片描述

具体在pandas 0.23.4版本中还在继续查找其方法!

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请联系我们举报,一经查实,本站将立刻删除。

发布者:全栈程序员-站长,转载请注明出处:https://javaforall.net/215895.html原文链接:https://javaforall.net

(0)
全栈程序员-站长的头像全栈程序员-站长


相关推荐

  • 几种常见的距离计算公式

    几种常见的距离计算公式在学习分类、聚类、预测、推荐算法的过程中常常会遇到比较两个或多个对象的相似性,而相似性的度量可以通过计算距离来实现。我们常用的距离计算公式是欧几里得距离公式,但是有时候这种计算方式会存在一些缺陷,那么就需要另外的计算方法去加以补充,本文将介绍几种在机器学习中常用的计算距离。在做很多研究问题时常常需要估算不同样本之间的相似性度量(SimilarityMeasurement),这时通常采用的方法就…

    2022年6月19日
    43
  • 什么是词向量?(NPL入门)

    什么是词向量?(NPL入门)什么是词向量?我们组实训选择的主题是与自然语言识别相关的,那么就不得不学习和了解一下自然语言识别中非常重要和基础的。于是我对于自己对词向量的学习进行了以下的总结。简而言之,词向量技术是将词转化成为稠密向量,并且对于相似的词,其对应的词向量也相近。一、词的表示在自然语言处理任务中,首先需要考虑词如何在计算机中表示。通常,有两种表示方式:one-hotrepresenta…

    2022年6月14日
    39
  • SQL报错注入_报错注入原理

    SQL报错注入_报错注入原理目录1报错注入概述2常用的报错注入命令2.2groupby重复键冲突(count()+floor()+rand()+groupby组合)2.2.1groupby重复键冲突的原理及bug演示2.2.2补充:sql语句解析过程2.3XPATH报错2.3.1extractvalue()函数2.3.2updatexml()函数2.4测试失败的命令3报错注入案例3.1操作环境3.2获取敏感信息3.2.1获取数据库名3.2.2获取表名3.2.3获取字段名3.2.4获取字段内

    2022年9月30日
    0
  • Mac和window生成ssh和查看ssh key

    Mac和window生成ssh和查看ssh key

    2022年2月9日
    58
  • 已知最大公约数和最小公倍数_7和15的最大公因数和最小公倍数

    已知最大公约数和最小公倍数_7和15的最大公因数和最小公倍数7-4 最大公约数和最小公倍数 (20分) 本题要求两个给定正整数的最大公约数和最小公倍数。输入格式: 输入在一行中给出两个正整数M和N(≤1000)。输出格式: 在一行中顺序输出M和N的最大公约数和最小公倍数,两数字间以1空格分隔。 输入样例: 511 292 输出样例: 73 2044#include <iostream>#include<ioma…

    2022年8月18日
    12
  • Open-Drain V.S. Push-Pull

    Open-Drain V.S. Push-Pull

    2021年8月26日
    46

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

关注全栈程序员社区公众号