Cholesky分解法可以将矩阵分解为,其中L为_半正定矩阵cholesky分解

Cholesky分解法可以将矩阵分解为,其中L为_半正定矩阵cholesky分解头文件:/**Copyright(c)2008-2011ZhangMing(M.Zhang),zmjerry@163.com**Thisprogramisfreesoftware;youcanredistributeitand/ormodifyit*underthetermsoftheGNUGeneralPublicLicenseasp…

大家好,又见面了,我是你们的朋友全栈君。如果您正在找激活码,请点击查看最新教程,关注关注公众号 “全栈程序员社区” 获取激活教程,可能之前旧版本教程已经失效.最新Idea2022.1教程亲测有效,一键激活。

Jetbrains全家桶1年46,售后保障稳定

头文件:

/*

* Copyright (c) 2008-2011 Zhang Ming (M. Zhang), zmjerry@163.com

*

* This program is free software; you can redistribute it and/or modify it

* under the terms of the GNU General Public License as published by the

* Free Software Foundation, either version 2 or any later version.

*

* Redistribution and use in source and binary forms, with or without

* modification, are permitted provided that the following conditions are met:

*

* 1. Redistributions of source code must retain the above copyright notice,

* this list of conditions and the following disclaimer.

*

* 2. Redistributions in binary form must reproduce the above copyright

* notice, this list of conditions and the following disclaimer in the

* documentation and/or other materials provided with the distribution.

*

* This program is distributed in the hope that it will be useful, but WITHOUT

* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or

* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for

* more details. A copy of the GNU General Public License is available at:

* http://www.fsf.org/licensing/licenses

*/

/*****************************************************************************

* cholesky.h

*

* Class template of Cholesky decomposition.

*

* For a symmetric, positive definite matrix A, this function computes the

* Cholesky factorization, i.e. it computes a lower triangular matrix L such

* that A = L*L’. If the matrix is not symmetric or positive definite, the

* function computes only a partial decomposition. This can be tested with

* the isSpd() flag.

*

* This class also supports factorization of complex matrix by specializing

* some member functions.

*

* Adapted form Template Numerical Toolkit.

*

* Zhang Ming, 2010-01 (revised 2010-12), Xi’an Jiaotong University.

*****************************************************************************/

#ifndef CHOLESKY_H

#define CHOLESKY_H

#include

namespace splab

{

template

class Cholesky

{

public:

Cholesky();

~Cholesky();

bool isSpd() const;

void dec( const Matrix &A );

Matrix getL() const;

Vector solve( const Vector &b );

Matrix solve( const Matrix &B );

private:

bool spd;

Matrix L;

};

//class Cholesky

#include

}

// namespace splab

#endif

// CHOLESKY_H

实现文件:

/*

* Copyright (c) 2008-2011 Zhang Ming (M. Zhang), zmjerry@163.com

*

* This program is free software; you can redistribute it and/or modify it

* under the terms of the GNU General Public License as published by the

* Free Software Foundation, either version 2 or any later version.

*

* Redistribution and use in source and binary forms, with or without

* modification, are permitted provided that the following conditions are met:

*

* 1. Redistributions of source code must retain the above copyright notice,

* this list of conditions and the following disclaimer.

*

* 2. Redistributions in binary form must reproduce the above copyright

* notice, this list of conditions and the following disclaimer in the

* documentation and/or other materials provided with the distribution.

*

* This program is distributed in the hope that it will be useful, but WITHOUT

* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or

* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for

* more details. A copy of the GNU General Public License is available at:

* http://www.fsf.org/licensing/licenses

*/

/*****************************************************************************

* cholesky-impl.h

*

* Implementation for Cholesky class.

*

* Zhang Ming, 2010-01 (revised 2010-12), Xi’an Jiaotong University.

*****************************************************************************/

/**

* constructor and destructor

*/

template

Cholesky::Cholesky() : spd(true)

{

}

template

Cholesky::~Cholesky()

{

}

/**

* return true, if original matrix is symmetric positive-definite.

*/

template

inline bool Cholesky::isSpd() const

{

return spd;

}

/**

* Constructs a lower triangular matrix L, such that L*L’= A.

* If A is not symmetric positive-definite (SPD), only a partial

* factorization is performed. If isspd() evalutate true then

* the factorizaiton was successful.

*/

template

void Cholesky::dec( const Matrix &A )

{

int m = A.rows();

int n = A.cols();

spd = (m == n);

if( !spd )

return;

L = Matrix(n,n);

// main loop.

for( int j=0; j

{

Type d = 0;

for( int k=0; k

{

Type s = 0;

for( int i=0; i

s += L[k][i]*L[j][i];

L[j][k] = s = (A[j][k]-s) / L[k][k];

d = d + s*s;

spd = spd && (A[k][j] == A[j][k]);

}

d = A[j][j] – d;

spd = spd && ( d > 0 );

L[j][j] = sqrt( d > 0 ? d : 0 );

for( int k=j+1; k

L[j][k] = 0;

}

}

/**

* return the lower triangular factor, L, such that L*L’=A.

*/

template

inline Matrix Cholesky::getL() const

{

return L;

}

/**

* Solve a linear system A*x = b, using the previously computed

* cholesky factorization of A: L*L’.

*/

template

Vector Cholesky::solve( const Vector &b )

{

int n = L.rows();

if( b.dim() != n )

return Vector();

Vector x = b;

// solve L*y = b

for( int k=0; k

{

for( int i=0; i

x[k] -= x[i]*L[k][i];

x[k] /= L[k][k];

}

// solve L’*x = y

for( int k=n-1; k>=0; –k )

{

for( int i=k+1; i

x[k] -= x[i]*L[i][k];

x[k] /= L[k][k];

}

return x;

}

/**

* Solve a linear system A*X = B, using the previously computed

* cholesky factorization of A: L*L’.

*/

template

Matrix Cholesky::solve( const Matrix &B )

{

int n = L.rows();

if( B.rows() != n )

return Matrix();

Matrix X = B;

int nx = B.cols();

// solve L*Y = B

for( int j=0; j

for( int k=0; k

{

for( int i=0; i

X[k][j] -= X[i][j]*L[k][i];

X[k][j] /= L[k][k];

}

// solve L’*X = Y

for( int j=0; j

for( int k=n-1; k>=0; –k )

{

for( int i=k+1; i

X[k][j] -= X[i][j]*L[i][k];

X[k][j] /= L[k][k];

}

return X;

}

/**

* Main loop of specialized member function. This macro definition is

* aimed at avoiding code duplication.

*/

#define MAINLOOP \

{ \

int m = A.rows(); \

int n = A.cols(); \

\

spd = (m == n); \

if( !spd ) \

return; \

\

for( int j=0; j

{ \

spd = spd && (imag(A[j][j]) == 0); \

d = 0; \

\

for( int k=0; k

{ \

s = 0; \

for( int i=0; i

s += L[k][i] * conj(L[j][i]); \

\

L[j][k] = s = (A[j][k]-s) / L[k][k]; \

d = d + norm(s); \

spd = spd && (A[k][j] == conj(A[j][k])); \

} \

\

d = real(A[j][j]) – d; \

spd = spd && ( d > 0 ); \

\

L[j][j] = sqrt( d > 0 ? d : 0 ); \

for( int k=j+1; k

L[j][k] = 0; \

} \

}

/**

* Solving process of specialized member function. This macro definition is

* aimed at avoiding code duplication.

*/

#define SOLVE1 \

{ \

for( int k=0; k

{ \

for( int i=0; i

x[k] -= x[i]*L[k][i]; \

\

x[k] /= L[k][k]; \

} \

\

for( int k=n-1; k>=0; –k ) \

{ \

for( int i=k+1; i

x[k] -= x[i]*conj(L[i][k]); \

\

x[k] /= L[k][k]; \

} \

\

return x; \

}

/**

* Solving process of specialized member function. This macro definition is

* aimed at avoiding code duplication.

*/

#define SOLVE2 \

{ \

int nx = B.cols(); \

for( int j=0; j

for( int k=0; k

{ \

for( int i=0; i

X[k][j] -= X[i][j]*L[k][i]; \

\

X[k][j] /= L[k][k]; \

} \

\

for( int j=0; j

for( int k=n-1; k>=0; –k ) \

{ \

for( int i=k+1; i

X[k][j] -= X[i][j]*conj(L[i][k]); \

\

X[k][j] /= L[k][k]; \

} \

\

return X; \

}

/**

* Specializing for “dec” member function.

*/

template <>

void Cholesky >::dec( const Matrix > &A )

{

float d;

complex s;

L = Matrix >(A.cols(),A.cols());

MAINLOOP;

}

template <>

void Cholesky >::dec( const Matrix > &A )

{

double d;

complex s;

L = Matrix >(A.cols(),A.cols());

MAINLOOP;

}

template <>

void Cholesky >::dec( const Matrix > &A )

{

long double d;

complex s;

L = Matrix >(A.cols(),A.cols());

MAINLOOP;

}

/**

* Specializing for “solve” member function.

*/

template <>

Vector > Cholesky >::solve( const Vector > &b )

{

int n = L.rows();

if( b.dim() != n )

return Vector >();

Vector > x = b;

SOLVE1

}

template <>

Vector > Cholesky >::solve( const Vector > &b )

{

int n = L.rows();

if( b.dim() != n )

return Vector >();

Vector > x = b;

SOLVE1

}

template <>

Vector > Cholesky >::solve( const Vector > &b )

{

int n = L.rows();

if( b.dim() != n )

return Vector >();

Vector > x = b;

SOLVE1

}

/**

* Specializing for “solve” member function.

*/

template <>

Matrix > Cholesky >::solve( const Matrix > &B )

{

int n = L.rows();

if( B.rows() != n )

return Matrix >();

Matrix > X = B;

SOLVE2

}

template <>

Matrix > Cholesky >::solve( const Matrix > &B )

{

int n = L.rows();

if( B.rows() != n )

return Matrix >();

Matrix > X = B;

SOLVE2

}

template <>

Matrix > Cholesky >::solve( const Matrix > &B )

{

int n = L.rows();

if( B.rows() != n )

return Matrix >();

Matrix > X = B;

SOLVE2

}

测试代码:

/*****************************************************************************

* cholesky_test.cpp

*

* Cholesky class testing.

*

* Zhang Ming, 2010-01 (revised 2010-12), Xi’an Jiaotong University.

*****************************************************************************/

#define BOUNDS_CHECK

#include

#include

#include

using namespace std;

using namespace splab;

typedef double Type;

const int N = 5;

int main()

{

Matrix A(N,N), L(N,N);

Vector b(N);

for( int i=1; i

{

for( int j=1; j

if( i == j )

A(i,i) = i;

else

if( i < j )

A(i,j) = i;

else

A(i,j) = j;

b(i) = i*(i+1)/2.0 + i*(N-i);

}

cout << setiosflags(ios::fixed) << setprecision(3);

cout << “The original matrix A : ” << A << endl;

Cholesky cho;

cho.dec(A);

if( !cho.isSpd() )

cout << “Factorization was not complete.” << endl;

else

{

L = cho.getL();

cout << “The lower triangular matrix L is : ” << L << endl;

cout << “A – L*L^T is : ” << A – L*trT(L) << endl;

Vector x = cho.solve(b);

cout << “The constant vector b : ” << b << endl;

cout << “The solution of Ax = b : ” << x << endl;

cout << “The Ax – b : ” << A*x-b << endl;

Matrix IA = cho.solve(eye(N,Type(1)));

cout << “The inverse matrix of A : ” << IA << endl;

cout << “The product of A*inv(A) : ” << A*IA << endl;

}

return 0;

}

运行结果:

The original matrix A : size: 5 by 5

1.000 1.000 1.000 1.000 1.000

1.000 2.000 2.000 2.000 2.000

1.000 2.000 3.000 3.000 3.000

1.000 2.000 3.000 4.000 4.000

1.000 2.000 3.000 4.000 5.000

The lower triangular matrix L is : size: 5 by 5

1.000 0.000 0.000 0.000 0.000

1.000 1.000 0.000 0.000 0.000

1.000 1.000 1.000 0.000 0.000

1.000 1.000 1.000 1.000 0.000

1.000 1.000 1.000 1.000 1.000

A – L*L^T is : size: 5 by 5

0.000 0.000 0.000 0.000 0.000

0.000 0.000 0.000 0.000 0.000

0.000 0.000 0.000 0.000 0.000

0.000 0.000 0.000 0.000 0.000

0.000 0.000 0.000 0.000 0.000

The constant vector b : size: 5 by 1

5.000

9.000

12.000

14.000

15.000

The solution of Ax = b : size: 5 by 1

1.000

1.000

1.000

1.000

1.000

The Ax – b : size: 5 by 1

0.000

0.000

0.000

0.000

0.000

The inverse matrix of A : size: 5 by 5

2.000 -1.000 0.000 0.000 0.000

-1.000 2.000 -1.000 0.000 0.000

0.000 -1.000 2.000 -1.000 0.000

0.000 0.000 -1.000 2.000 -1.000

0.000 0.000 0.000 -1.000 1.000

The product of A*inv(A) : size: 5 by 5

1.000 0.000 0.000 0.000 0.000

0.000 1.000 0.000 0.000 0.000

0.000 0.000 1.000 0.000 0.000

0.000 0.000 0.000 1.000 0.000

0.000 0.000 0.000 0.000 1.000

Process returned 0 (0x0) execution time : 0.109 s

Press any key to continue.

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请联系我们举报,一经查实,本站将立刻删除。

发布者:全栈程序员-站长,转载请注明出处:https://javaforall.net/219123.html原文链接:https://javaforall.net

(0)
全栈程序员-站长的头像全栈程序员-站长


相关推荐

  • HashMap的数据结构

    前提:主要数据结构:数据结构中有数组和链表来实现对数据的存储,但这两者基本上是两个极端。数组数组存储区间是连续的,占用内存严重,故空间复杂的很大。但数组的二分查找时间复杂度小,为O(1);数组的特点是:寻址容易,插入和删除困难;链表链表存储区间离散,占用内存比较宽松,故空间复杂度很小,但时间复杂度很大,达O(N)。链表的特点是:寻址困难,插入和删除容易。哈希表那么我…

    2022年4月7日
    47
  • 三种算法求两个正整数的最大公约数和最小公倍数;求三个数的最大公约数和最小公倍数「建议收藏」

    三种算法求两个正整数的最大公约数和最小公倍数;求三个数的最大公约数和最小公倍数「建议收藏」第二次作业题目:求两个正整数的最大公约数和最小公倍数。基本要求:1.程序风格良好(使用自定义注释模板),两种以上算法解决最大公约数问题,提供友好的输入输出。提高要求:1.三种以上算法解决两个正整数最大公约数问题。          2.求3个正整数的最大公约数和最小公倍数。一.算法分析    已知结论:a,b的最大公约数*其最小公倍数=a…

    2022年5月17日
    49
  • matlab粒子群算法多维函数最优解_多目标粒子群算法matlab

    matlab粒子群算法多维函数最优解_多目标粒子群算法matlab前面一篇文章介绍了遗传算法,这里再介绍一种进化算法,称为粒子群算法。同遗传算法类似,粒子群算法也是仿照了自然界的生物现象得到的。这种现象就是鸟群在某个未知空间内寻找食物这一思想。鸟群通过自身经验和种群之间的交流调整自己的搜寻路径,从而不断寻找,直到找到食物最多的地点。其中某个个体就是鸟群中某一只鸟,该个体具有的属性就是其所在位置和搜索方向。该个体所在地点对应的食物数量可以理解为该处函数取值的理想…

    2022年5月3日
    35
  • zero based budgeting_monetdb

    zero based budgeting_monetdbMcObjectODBCimplementsmostoftheODBC3.0standardsexcept‘descriptors’, whicharesupplementary.Currently,theMcObjectODBCdriverreturns“02.00”asthe driverversion.OpenaDOSCMD.EX

    2022年10月14日
    3
  • 图形推理1000题pdf_图形推理的复习流程

    图形推理1000题pdf_图形推理的复习流程1.养成图形推理的思维方式图形推理是整个行测考试中比较独特的存在,考生可以思考一下,如果图形推理的某一道题不会,那可能真的就是不会,想多久都是想不出来的,它不像言语的题目,言语题不会的话,可能是纠结,两个答案之间徘徊;它也不像数量关系,数量题不会,可能是不会技巧,但给你足够的时间,列方程总是能做出来的。可是图形推理的题目不会,那真的就是不会的,给你多少时间你都是想不出来,但一旦告诉你这…

    2025年10月16日
    4
  • 数据库排名整理_时序数据库排名

    数据库排名整理_时序数据库排名1、编写一个SQL查询,获取Employee 表中第二高的薪水(Salary) 。+++|Id|Salary|+++|1|100||2|200

    2022年8月1日
    9

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

关注全栈程序员社区公众号