裴蜀定理简单应用「建议收藏」

裴蜀定理简单应用「建议收藏」裴蜀定理定理内容:设aaa,bbb是不全为000的整数,则存在整数xxx,yyy使得a⋅xa\cdotxa⋅x+++b⋅yb\cdotyb⋅y=gcd⁡(x,y)\gcd(x,y)gcd(x,y)。定理简单应用:例题:洛谷p4549https://www.luogu.com.cn/problem/P4549思路分析:给定一个序列,求一个SSS满足S=S=S=∑i=1n\sum\limits_{i=1}^ni=1∑n​Ai×XiA_i\timesX_iAi​×Xi​,而

大家好,又见面了,我是你们的朋友全栈君。如果您正在找激活码,请点击查看最新教程,关注关注公众号 “全栈程序员社区” 获取激活教程,可能之前旧版本教程已经失效.最新Idea2022.1教程亲测有效,一键激活。

Jetbrains全家桶1年46,售后保障稳定

裴蜀定理

定理内容:

  • a a a, b b b是不全为 0 0 0的整数,则存在整数 x x x y y y使得 a ⋅ x a\cdot x ax + + + b ⋅ y b\cdot y by = gcd ⁡ ( x , y ) \gcd(x,y) gcd(x,y)

定理简单应用:

例题:

洛谷p4549

https://www.luogu.com.cn/problem/P4549

思路分析:
  • 给定一个序列,求一个 S S S满足 S = S = S= ∑ i = 1 n \sum\limits_{i=1}^n i=1n A i × X i A_i\times X_i Ai×Xi,而且要求满足这个条件的S的最小值,这时我们想到对于任意不为 0 0 0的整数都有 a ⋅ x a\cdot x ax + + + b ⋅ y b\cdot y by = gcd ⁡ ( x , y ) \gcd(x,y) gcd(x,y)
  • 那么对这个定理的另一个解读就是总有 x x x y y y使得 a ⋅ x a\cdot x ax + + + b ⋅ y b\cdot y by = d d d,且 gcd ⁡ ( x , y ) \gcd(x,y) gcd(x,y) | d d d
  • 因此我们想到这个定理是否可以推广成 n n n个数呢?答案是肯定的。
  • 所以此题即要我们求这一个序列的 gcd ⁡ \gcd gcd即可。
代码如下:
#include <bits/stdc++.h>
using namespace std;
int a[100];
int gcd(int a, int b)
{ 
   
        if (b == 0)
                return a;
        else
                return gcd(b, a % b);
}
int main()
{ 
   
        int n;
        cin >> n;
        cin >> a[0];
        int ans = a[0];
        for (int i = 1; i < n; i++)
        { 
   
                cin >> a[i];
                ans = gcd(a[i], ans);
        }
        cout << abs(ans) << endl;
}

Jetbrains全家桶1年46,售后保障稳定

Codeforces Round #290 (Div. 2) D. Fox And Jumping

https://www.luogu.com.cn/problem/CF510D

思路分析:
  • 要到达每一格,那么我们就要使选上的数满足 gcd ⁡ \gcd gcd = 1。
  • 在这里我们用到了dp,也就是说要选上的数的价格(使 gcd ⁡ \gcd gcd = tmp)和之前的满足( gcd ⁡ \gcd gcd = tmp)的价格取最少即可。然后我们需要对每个数进行配对(不止是两两配对),所以我们想到了用一个map来储存下标为当前最大公因子数,value为所花价值来操作。
  • 具体细节见代码注释
代码如下:
#include <bits/stdc++.h>
using namespace std;
map<int, int> dp;
int l[301];
int c[301];
int gcd(int a, int b)
{ 
   
        if (b == 0)
                return a;
        else
                return gcd(b, a % b);
}
//求最大公因子
int main()
{ 
   
        int n;
        scanf("%d", &n);
        dp.clear();
        //容器清空
        for (int i = 1; i <= n; i++)
        { 
   
                scanf("%d", &l[i]);
        }
        //读入数
        for (int i = 1; i <= n; i++)
        { 
   
                scanf("%d", &c[i]);
        }
        //读入选择该数的费用
        dp[0] = 0;
        //初始化
        for (int i = 1; i <= n; i++)
        { 
   

                map<int, int>::iterator it = dp.begin();
                //用迭代器
                for (; it != dp.end(); it++)
                { 
   
                        int tmp = gcd(it->first, l[i]);
                        //tmp即为选上的这个数和map里已经选好的数进行gcd运算
                        if (dp.count(tmp))
                        { 
   
                                dp[tmp] = min(dp[tmp], it->second + c[i]);
                                //就是说要取到gcd为tmp时的最小花费
                        }
                        else
                                dp[tmp] = it->second + c[i];
                                //之前数配对时没有出现过的gcd,因此直接储存
                }
        }
        if (dp.count(1))
                cout << dp[1] << endl;
                //最后由裴蜀定理可知我们要的是gcd = 1 的最小花费
        else
                cout << -1 << endl;
                //没有就代表无论怎么选gcd都不为1,那么总有格子跳不到
        return 0;
}
版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请联系我们举报,一经查实,本站将立刻删除。

发布者:全栈程序员-站长,转载请注明出处:https://javaforall.net/230606.html原文链接:https://javaforall.net

(0)
全栈程序员-站长的头像全栈程序员-站长


相关推荐

  • 动画:用动画给面试官解释 TCP 三次握手过程

    动画:用动画给面试官解释 TCP 三次握手过程作者|小鹿来源|公众号:小鹿动画学编程写在前边TCP三次握手过程对于面试是必考的一个,所以不但要掌握TCP整个握手的过程,其中有些小细节也更受到面试官的青睐。对于这部分掌握以及TCP的四次挥手,小鹿将会以动画的形式呈现给每个人,这样将复杂的知识简单化,理解起来也容易了很多,尤其对于一个初学者来说。学习导图一、TCP是什么?TCP(Transmissio…

    2022年6月17日
    34
  • Eclipse自动补全设置(终极方案)

    Eclipse自动补全设置(终极方案)Eclipse自动补全、字体、护眼色、tomcat、导包1.设置字体2.设置护眼色3.设置自动补全4.配置Tomcat服务器5.配置默认JSP编码6.无法导包解决方案1.设置字体2.设置护眼色3.设置自动补全26字母和”.”均会提示:Java和Java类型补全建议+26字母异常强大的补全提示:4.配置Tomcat服务器5.配置默认JSP编码6.无法导包解决方案…

    2022年6月28日
    27
  • log4cpp编译安装[通俗易懂]

    log4cpp编译安装[通俗易懂]下载代码官网log4cpp下载或者git下载gitclonehttps://git.code.sf.net/p/log4cpp/codegitlog4cpp-codegit编译安装以centos下git下载代码为例cdlog4cpp-codegit/./autogen.sh./configuremakemakecheckmakeinstall安装完成后,头文件

    2022年7月14日
    16
  • 交换排序之高速排序[通俗易懂]

    交换排序之高速排序

    2022年1月19日
    46
  • Stream流的常用方法[通俗易懂]

    Stream流的常用方法[通俗易懂]1、快速创建ListListlist=Stream.of(“1″,”2”).collect(Collectors.toList());2、取对象的某一列低效方式:List<String>userNameList=newArrayList<>();for(String)List<String>userNameList=list.stream().map(User::getName).collect(Collectors.toList(

    2022年10月5日
    0

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

关注全栈程序员社区公众号