不同维度矩阵相乘[通俗易懂]

不同维度矩阵相乘[通俗易懂]在深度学习中经常会遇到不同维度的矩阵相乘的情况,本文会通过一些例子来展示不同维度矩阵乘法的过程。总体原则:在高维矩阵中取与低维矩阵相同维度的分片来与低维矩阵相乘,结果再按分片时的顺序还原为高维矩阵。相乘结果的维度与原来的高维矩阵一致。二维乘一维三维乘一维三维乘二维…

大家好,又见面了,我是你们的朋友全栈君。如果您正在找激活码,请点击查看最新教程,关注关注公众号 “全栈程序员社区” 获取激活教程,可能之前旧版本教程已经失效.最新Idea2022.1教程亲测有效,一键激活。

Jetbrains全家桶1年46,售后保障稳定

前言

在深度学习中经常会遇到不同维度的矩阵相乘的情况,本文会通过一些例子来展示不同维度矩阵乘法的过程。

总体原则:在高维矩阵中取与低维矩阵相同维度的子矩阵来与低维矩阵相乘,结果再按子矩阵的排列顺序还原为高维矩阵。相乘结果的维度与原来的高维矩阵一致。
具体来说,当一方为一维矩阵时,另一方取其最后一维子矩阵来做乘法;当两方都是大于等于2维的矩阵时,取各自的最后两维构成的子矩阵来做乘法,其他维度体现结果的拼接信息,不参与运算(为batch训练提供了便利,batch中各样本的顺序在矩阵运算前后保持一致)。

实例:下面我们从低维到高维,依次演示不同维度矩阵相乘的结果。

二维乘一维

二维矩阵依次取出一维的行向量与一维矩阵做内积

#二维乘一维
import numpy as np

a = np.linspace(1,4,4).reshape(2,2)
b = np.array([1,1])
c = np.matmul(a,b)
print('a:\n',a)
print('b:\n',b)
print('ab:\n',c)

Jetbrains全家桶1年46,售后保障稳定

在这里插入图片描述

三维乘一维

三维矩阵包含两个二维矩阵,分别将这两个二维矩阵与一维矩阵相乘(乘积为一维),结果按原来的顺序拼接起来,构成一个二维矩阵

#三维乘一维
import numpy as np

a = np.linspace(1,8,8).reshape(2,2,2)
b = np.array([1,1])
c = np.matmul(a,b)
print('a:\n',a)
print('b:\n',b)
print('ab:\n',c)

在这里插入图片描述

二维乘二维

最常见的矩阵相乘形式

#二维乘二维
import numpy as np

a = np.linspace(1,4,4).reshape(2,2)
b = np.ones((2,2))
c = np.matmul(a,b)
print('a:\n',a)
print('b:\n',b)
print('ab:\n',c)

在这里插入图片描述

三维乘二维

将三维矩阵中的后两维组成的二维子矩阵分别与二维矩阵相乘(二维),结果再按原顺序拼接起来(三维)

#相当于三维矩阵里的二维分量分别与二维矩阵相乘,再拼接起来
import numpy as np

a=np.linspace(1,8,8).reshape(2,2,2)
# print(a)
b = np.array([[1,0],[0,1]]) #单位矩阵
c = np.matmul(a,b)
print('a:\n',a)
print('b:\n',b)
print('ab:\n',c)

在这里插入图片描述

三维乘三维

两个三维矩阵中对应位置的二维子矩阵分别相乘,结果按第0维分量更多的那个矩阵的结构拼接。
注意:,并不是任意两个三维矩阵都能相乘,其必须满足两个条件:

1:两个矩阵的后两个维度构成的二维矩阵之间必须满足二维矩阵相乘的条件,即第一个矩阵的列数等于第二个矩阵的行数
2:两个矩阵的第0维分量数必须相等(每个分量对应相乘) 或 有一方为1(broadcast-广播机制) —-反例见下方第3种情况

1-(2,2,2)*(2,2,2)

#三维乘三维 (2,2,2)*(2,2,2)
#计算时都是二维乘二维,第三维度反映二维矩阵的拼接信息;对应位置二维矩阵相乘
import numpy as np

a=np.linspace(1,8,8).reshape(2,2,2)
# print(a)
e = np.array([[[1,0],[0,1]]])
f = np.array([[[0,1],[1,0]]])
b = np.vstack((e,f))
c = np.matmul(a,b)
print('a:\n',a)
print('b:\n',b)
print('ab:\n',c)

在这里插入图片描述

2-(2,2,2)*(1,2,2)

#三维乘三维 (2,2,2)*(1,2,2)
#广播机制(broadcast)
import numpy as np

a=np.linspace(1,8,8).reshape(2,2,2)
# print(a)
b = np.array([[[0,1],[1,0]]])
c = np.matmul(a,b)
print('a:\n',a)
print('b:\n',b)
print('ab:\n',c)

在这里插入图片描述

3-(3,2,2)*(2,2,2)–失败

第0维分量数不满足条件2,不能相乘

# 三维乘三维--不同形状:(4,2,2)*(2,2,2)
import numpy as np

a=np.linspace(1,16,16).reshape(4,2,2)
# print(a)
e = np.array([[[1,0],[0,1]]])
f = np.array([[[0,1],[1,0]]])
b = np.vstack((e,f))
c = np.matmul(a,b)
print('a:\n',a)
print('b:\n',b)
print('c:\n',c)

在这里插入图片描述

多维乘多维

与三维乘三维类似,可乘条件2改为:除最后两维外,每一维的分量数必须对应相等(每个分量对应相乘) 或 有一方为1(broadcast-广播机制)

#各维度的分量相互对应,最终仍是计算二维乘二维
import numpy as np

a=np.linspace(1,16,16).reshape(2,2,2,2)
b = np.ones((2,2,2,2)) #全1矩阵
c = np.matmul(a,b)
print('a:\n',a)
print('b:\n',b)
print('ab:\n',c)

在这里插入图片描述

参考资料

知乎:多维矩阵相乘的可视化

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请联系我们举报,一经查实,本站将立刻删除。

发布者:全栈程序员-站长,转载请注明出处:https://javaforall.net/230764.html原文链接:https://javaforall.net

(0)
全栈程序员-站长的头像全栈程序员-站长


相关推荐

  • 基于springboot自定义事务注解「建议收藏」

    基于springboot自定义事务注解1.开启注解支持(springboot默认支持注解)2.自定义注解接口3.写事务类4.写切面类2.自定义注解接口importjava.lang.annotation.*;/***注解类*/@Target(ElementType.METHOD)//定义注解用在方法上@Retention(RetentionPolicy.RUNTIME)//运行时注解@Documentedpublic@int

    2022年4月13日
    41
  • java 学生信息管理系统

    java 学生信息管理系统只设计了一部分全部的太多了。会慢慢更新增加。学生信息管理包括添加,删除,修改,查询,显示全部等具体结构如图在SQLServer2005数据库上实现数据操作。使用纯面向对象的java语言作为开发语言在sqlserver2005新建一个名为Student的数据库,在下面新建一个名为stu的表当然列名你可以随便写当然要有个学号啊。我的修改等等都是根据学号的

    2022年7月13日
    16
  • vscode搭建react框架(vscode补全js方法)

    文章目录一、安装node二、配置淘宝镜像三、配置vscode(win10)四、全局安装脚手架五、创建项目一、安装node请在官网下载安装:https://nodejs.org/zh-cn/vscode中点击(ctrl+`)调出终端输入指令node-v,能显示版本号,说明node已经装好了输入指令npm-v,能显示版本号,说明npm可以使用了点击链接查看图文教程https://blog.csdn.net/qq_45677671/article/detail

    2022年4月12日
    246
  • 胡崧讲Dreamweaver视频教程

    胡崧讲Dreamweaver视频教程胡崧讲Dreamweaver视频教程01胡崧讲Dreamweaver视频教程02 胡崧讲Dreamweaver视频教程03胡崧讲Dreamweaver视频教程04胡崧讲Dreamweaver视频教程05胡崧讲Dreamweaver视频教程06胡崧讲Dreamweaver视频教程07胡崧讲Dreamweaver视频教程08胡崧讲Dre…

    2022年5月10日
    35
  • C#数组反转

    C#数组反转staticvoidMain(string[]arr){string[]names={“老杨1″,”老李2″,”老王3″,”老牛4″,”老虎5″,”老磁6”};for(inti=0;i<names.Length/2;i++){…

    2022年6月8日
    51
  • 栈和队列讲解_栈和队列的优缺点

    栈和队列讲解_栈和队列的优缺点目录1、栈(1)栈的概念及结构(2)栈的实现2、队列(1)队列的概念及结构(2)队列的实现前言:栈和队列是在顺序表和链表的延伸,如果前面的顺序表和链表你已经掌握了的话,栈和队列对你来说应该就是小菜一碟了。1、栈(1)栈的概念及结构栈:一种特殊的线性表,其只允许在固定的一端进行插入和删除元素操作。进行数据插入和删除操作的一端称为栈顶,另一端称为栈底。栈中的数据元素遵守后进先出LIFO(LastInFirstOut)的原则。压栈:栈的插入操作叫做进栈/压栈..

    2025年6月22日
    6

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

关注全栈程序员社区公众号