向量的内、外积及其几何含义

向量的内、外积及其几何含义一、向量的内积(点乘)定义概括地说,向量的内积(点乘/数量积)。对两个向量执行点乘运算,就是对这两个向量对应位一一相乘之后求和的操作,如下所示,对于向量a和向量b:a和b的点积公式为:这里要求一维向量a和向量b的行列数相同。注意:点乘的结果是一个标量(数量而不是向量)定义:两个向量a与b的内积为a·b=|a||b|cos∠(a,b),特别地,0·a=a·0…

大家好,又见面了,我是你们的朋友全栈君。如果您正在找激活码,请点击查看最新教程,关注关注公众号 “全栈程序员社区” 获取激活教程,可能之前旧版本教程已经失效.最新Idea2022.1教程亲测有效,一键激活。

Jetbrains全家桶1年46,售后保障稳定

一、向量的内积(点乘)

定义

概括地说,向量的内积(点乘/数量积)。对两个向量执行点乘运算,就是对这两个向量对应位一一相乘之后求和的操作,如下所示,对于向量a和向量b:

向量的内、外积及其几何含义 向量的内、外积及其几何含义

a和b的点积公式为:

向量的内、外积及其几何含义

这里要求一维向量a和向量b的行列数相同。注意:点乘的结果是一个标量(数量而不是向量)

定义:两个向量ab的内积为 a·b = |a||b|cos∠(a, b),特别地,0·a =a·0 = 0;若ab是非零向量,则ab****正交的充要条件是a·b = 0。

向量内积的性质:

  1. a^2 ≥ 0;当a^2 = 0时,必有a = 0. (正定性)
  2. a·b = b·a. (对称性)
  3. a + μbc = λa·c + μb·c,对任意实数λ, μ成立. (线性)
  4. cos∠(a,b) =a·b/(|a||b|).
  5. |a·b| ≤ |a||b|,等号只在ab共线时成立.

向量内积的几何意义

内积(点乘)的几何意义包括:

  1. 表征或计算两个向量之间的夹角
  2. b向量在a向量方向上的投影

有公式:

向量的内、外积及其几何含义

推导过程如下,首先看一下向量组成:

向量的内、外积及其几何含义

定义向量c

向量的内、外积及其几何含义

根据三角形余弦定理(这里a、b、c均为向量,下同)有:

向量的内、外积及其几何含义

根据关系c=ab有:

向量的内、外积及其几何含义

即:

a∙b=|a||b|cos⁡(θ)

向量a,b的长度都是可以计算的已知量,从而有a和b间的夹角θ:

θ=arccos⁡(a∙b|a||b|)

进而可以进一步判断两个向量是否同一方向或正交(即垂直)等方向关系,具体对应关系为:

a∙b>0→方向基本相同,夹角在0°到90°之间 
a∙b=0→ 正交,相互垂直 
a∙b<0→ 方向基本相反,夹角在90°到180°之间

二、向量的外积(叉乘)

定义

概括地说,两个向量的外积,又叫叉乘、叉积向量积,其运算结果是一个向量而不是一个标量。并且两个向量的外积与这两个向量组成的坐标平面垂直。

定义:向量ab的外积a×b是一个向量,其长度等于|a×b| = |a||b|sin∠(a,b),其方向正交于ab。并且,(a,b,a×b)构成右手系。 
特别地,0×a = a×0 = 0.此外,对任意向量aa×a=0

对于向量a和向量b:

向量的内、外积及其几何含义

a和b的外积公式为:

向量的内、外积及其几何含义

其中:

向量的内、外积及其几何含义

根据i、j、k间关系,有:

向量的内、外积及其几何含义

向量外积的性质

  1. a × b = –b × a. (反称性)
  2. a + μb) × c = λ(a ×c) + μ(b ×c). (线性)

向量外积的几何意义

在三维几何中,向量a和向量b的外积结果是一个向量,有个更通俗易懂的叫法是法向量,该向量垂直于a和b向量构成的平面。

在3D图像学中,外积的概念非常有用,可以通过两个向量的外积,生成第三个垂直于a,b的法向量,从而构建X、Y、Z坐标系。如下图所示:

向量的内、外积及其几何含义

在二维空间中,外积还有另外一个几何意义就是:|a×b|在数值上等于由向量a和向量b构成的平行四边形的面积。

 

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请联系我们举报,一经查实,本站将立刻删除。

发布者:全栈程序员-站长,转载请注明出处:https://javaforall.net/231286.html原文链接:https://javaforall.net

(0)
全栈程序员-站长的头像全栈程序员-站长


相关推荐

  • net mvc 设置启动页面「建议收藏」

    net mvc 设置启动页面「建议收藏」在项目的App_Start文件夹下的RouteConfig页面设置publicstaticvoidRegisterRoutes(RouteCollectionroutes){routes.IgnoreRoute(“{resource}.axd/{*pathInfo}”);routes.MapRoute(name:”Default”,url:”{controller}/{action}/{id}”,defaults:new{controller=”Home”,

    2022年7月27日
    4
  • 一键生成惊雷等喊麦歌词

    一键生成惊雷等喊麦歌词思路写一下 1 给一长篇的小说 利用正则表达式将小说分为无数的字符串 2 将从后到前字符串切割 最长为 n 否则一句话太长 3 并且将每一个字符串的末尾音节提取出来 普通的韵脚音的话放在一个字符数组里面 3 增加一个 hashmap 表 添加平时用的韵脚 4 将符合 hashmap 的韵脚放在字典里 5 规定歌词的格式 比如 随机从字典取出字

    2025年6月5日
    2
  • 启动嵌入式间:资源有限的系统启动

    启动嵌入式间:资源有限的系统启动

    2022年1月10日
    40
  • 你应该知道的10个奇特的 HTML5 单页网站「建议收藏」

    你应该知道的10个奇特的 HTML5 单页网站「建议收藏」网页设计师努力寻找新的方式来展现内容。其中一个大的趋势是单页网站,现在被世界上的一些大的品牌广泛采用,使用它们来为用户提供一个快速,干净和简单的而且​​美丽的网站。下面是10个令人惊叹的单页H​​T

    2022年8月3日
    5
  • numpy的astype函数

    numpy的astype函数astype函数用于array中数值类型转换

    2022年5月27日
    95
  • top命令 详解_top命令的用法

    top命令 详解_top命令的用法top命令是Linux下常用的性能分析工具,能够实时显示系统中各个进程的资源占用状况,类似于Windows的任务管理器。下面详细介绍它的使用方法。top是一个动态显示过程,即可以通过用户按键来不断刷新当前状态.如果在前台执行该命令,它将独占前台,直到用户终止该程序为止.比较准确的说,top命令提供了实时的对系统处理器的状态监视.它将显示系统中CPU最“敏感”的任务列表.该命令可以按CPU使用.内存使用和执行时间对任务进行排序;而且该命令的很多特性都可以通过交互式命令或者在个人定制文件中进行设定.1...

    2022年9月25日
    2

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

关注全栈程序员社区公众号