可变形卷积pytorch版本解读

可变形卷积pytorch版本解读1 前言 argparse 是 python 用于解析命令行参数和选项的标准模块例如 pythonparseT pyinput txtoutput txtuser nameport 8080 使用步骤 1 importargpar parser argparse ArgumentPars 3 parser add argument 4 pa

1. 前言

1:import argparse 2:parser = argparse.ArgumentParser() 3:parser.add_argument() 4:parser.parse_args() 

torch.utils.data.DataLoader:PyTorch中数据读取的一个重要接口是torch.utils.data.DataLoader,该接口定义在dataloader.py脚本中,只要是用PyTorch来训练模型基本都会用到该接口,

注意:

该接口主要用来将自定义的数据读取接口的输出或者PyTorch已有的数据读取接口的输入按照batch size封装成Tensor,后续只需要再包装成Variable即可作为模型的输入,

因此该接口有点承上启下的作用,比较重要。

2. test.py

from __future__ import print_function import argparse import torch import torch.nn as nn import torch.nn.functional as F import torch.optim as optim from torchvision import datasets, transforms from torch.autograd import Variable from deform_conv import DeformConv2D from time import time # Training settings parser = argparse.ArgumentParser(description='PyTorch MNIST Example') parser.add_argument('--batch-size', type=int, default=32, metavar='N', help='input batch size for training (default: 32)') parser.add_argument('--test-batch-size', type=int, default=32, metavar='N', help='input batch size for testing (default: 32)') parser.add_argument('--epochs', type=int, default=10, metavar='N', help='number of epochs to train (default: 10)') parser.add_argument('--lr', type=float, default=0.01, metavar='LR', help='learning rate (default: 0.01)') parser.add_argument('--momentum', type=float, default=0.5, metavar='M', help='SGD momentum (default: 0.5)') parser.add_argument('--no-cuda', action='store_true', default=False, help='disables CUDA training') parser.add_argument('--seed', type=int, default=1, metavar='S', help='random seed (default: 1)') parser.add_argument('--log-interval', type=int, default=10, metavar='N', help='how many batches to wait before logging training status') args = parser.parse_args() args.cuda = not args.no_cuda and torch.cuda.is_available() ''' 编写与设备无关的代码 (可用时受益于 GPU 加速,不可用时会倒退回 CPU)时,选择并保存适当的 torch.device, 不失为一种好方法,它可用于确定存储张量的位置。 device = torch.device('cuda' if args.cuda else 'cpu') ''' torch.manual_seed(args.seed) #为CPU设置种子用于生成随机数,以使得结果是确定的 if args.cuda: '''为当前GPU设置随机种子; 如果使用多个GPU,应该使用torch.cuda.manual_seed_all()为所有的GPU设置种子。 ''' torch.cuda.manual_seed(args.seed) kwargs = {'num_workers': 1, 'pin_memory': True} if args.cuda else {} """ 加载数据。组合数据集和采样器,提供数据上的单或多进程迭代器 参数: dataset:Dataset类型,从其中加载数据 batch_size:int,可选。每个batch加载多少样本 shuffle:bool,可选。为True时表示每个epoch都对数据进行洗牌 sampler:Sampler,可选。从数据集中采样样本的方法。 num_workers:int,可选。加载数据时使用多少子进程。默认值为0,表示在主进程中加载数据。 collate_fn:callable,可选。 pin_memory:bool,可选 drop_last:bool,可选。True表示如果最后剩下不完全的batch,丢弃。False表示不丢弃。 """ train_loader = torch.utils.data.DataLoader( datasets.MNIST('./MNIST', train=True, download=True, transform=transforms.Compose([ transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,)) ])), batch_size=args.batch_size, shuffle=True, kwargs) test_loader = torch.utils.data.DataLoader( datasets.MNIST('./MNIST', train=False, download=True, transform=transforms.Compose([ transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,)) ])), batch_size=args.test_batch_size, shuffle=True, kwargs) class DeformNet(nn.Module): def __init__(self): super(DeformNet, self).__init__() self.conv1 = nn.Conv2d(1, 32, kernel_size=3, padding=1) self.bn1 = nn.BatchNorm2d(32) self.conv2 = nn.Conv2d(32, 64, kernel_size=3, padding=1) self.bn2 = nn.BatchNorm2d(64) self.conv3 = nn.Conv2d(64, 128, kernel_size=3, padding=1) self.bn3 = nn.BatchNorm2d(128) self.offsets = nn.Conv2d(128, 18, kernel_size=3, padding=1) self.conv4 = DeformConv2D(128, 128, kernel_size=3, padding=1) self.bn4 = nn.BatchNorm2d(128) self.classifier = nn.Linear(128, 10) def forward(self, x): # convs x = F.relu(self.conv1(x)) x = self.bn1(x) x = F.relu(self.conv2(x)) x = self.bn2(x) x = F.relu(self.conv3(x)) x = self.bn3(x) # deformable convolution offsets = self.offsets(x) x = F.relu(self.conv4(x, offsets)) x = self.bn4(x) x = F.avg_pool2d(x, kernel_size=28, stride=1).view(x.size(0), -1) x = self.classifier(x) return F.log_softmax(x, dim=1) class PlainNet(nn.Module): def __init__(self): super(PlainNet, self).__init__() self.conv1 = nn.Conv2d(1, 32, kernel_size=3, padding=1) self.bn1 = nn.BatchNorm2d(32) self.conv2 = nn.Conv2d(32, 64, kernel_size=3, padding=1) self.bn2 = nn.BatchNorm2d(64) self.conv3 = nn.Conv2d(64, 128, kernel_size=3, padding=1) self.bn3 = nn.BatchNorm2d(128) self.conv4 = nn.Conv2d(128, 128, kernel_size=3, padding=1) self.bn4 = nn.BatchNorm2d(128) self.classifier = nn.Linear(128, 10) def forward(self, x): # convs x = F.relu(self.conv1(x)) x = self.bn1(x) x = F.relu(self.conv2(x)) x = self.bn2(x) x = F.relu(self.conv3(x)) x = self.bn3(x) x = F.relu(self.conv4(x)) x = self.bn4(x) x = F.avg_pool2d(x, kernel_size=28, stride=1).view(x.size(0), -1) x = self.classifier(x) return F.log_softmax(x, dim=1) model = DeformNet() ''' 将所有的模型参数移动到GPU上 if args.cuda: model.cuda()将所有的模型参数移动到GPU上 ''' def init_weights(m): if isinstance(m, nn.Conv2d) or isinstance(m, nn.Linear): nn.init.xavier_uniform(m.weight, gain=nn.init.calculate_gain('relu')) if m.bias is not None: m.bias.data = torch.FloatTensor(m.bias.shape[0]).zero_() def init_conv_offset(m): m.weight.data = torch.zeros_like(m.weight.data) if m.bias is not None: m.bias.data = torch.FloatTensor(m.bias.shape[0]).zero_() model.apply(init_weights) model.offsets.apply(init_conv_offset) if args.cuda: model.cuda() optimizer = optim.SGD(model.parameters(), lr=args.lr, momentum=args.momentum) def train(epoch): model.train() #把module设成training模式,对Dropout和BatchNorm有影响 for batch_idx, (data, target) in enumerate(train_loader): ''' Variable类对Tensor对象进行封装,会保存该张量对应的梯度,以及对生成该张量的函数grad_fn的一个引用。 如果该张量是用户创建的,grad_fn是None,称这样的Variable为叶子Variable。 ''' data, target = Variable(data), Variable(target) if args.cuda: data, target = data.cuda(), target.cuda() optimizer.zero_grad() output = model(data) loss = F.nll_loss(output, target) #负log似然损失 loss.backward() optimizer.step() if batch_idx % args.log_interval == 0: print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format( epoch, batch_idx * len(data), len(train_loader.dataset), 100. * batch_idx / len(train_loader), loss.data[0])) def test(): model.eval() #把module设置为评估模式,只对Dropout和BatchNorm模块有影响 test_loss = 0 correct = 0 for data, target in test_loader: if args.cuda: data, target = data.cuda(), target.cuda() data, target = Variable(data, volatile=True), Variable(target) output = model(data) test_loss += F.nll_loss(output, target, size_average=False).data[0] # sum up batch loss pred = output.data.max(1, keepdim=True)[1] # get the index of the max log-probability correct += pred.eq(target.data.view_as(pred)).cpu().sum() test_loss /= len(test_loader.dataset) print('\nTest set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n'.format( test_loss, correct, len(test_loader.dataset), 100. * correct / len(test_loader.dataset))) for epoch in range(1, args.epochs + 1): since = time() train(epoch) iter = time() - since print("Spends {}s for each training epoch".format(iter/args.epochs)) test() 

3. deform_conv.py

from torch.autograd import Variable, Function import torch from torch import nn import numpy as np class DeformConv2D(nn.Module): def __init__(self, inc, outc, kernel_size=3, padding=1, bias=None): super(DeformConv2D, self).__init__() self.kernel_size = kernel_size self.padding = padding self.zero_padding = nn.ZeroPad2d(padding) self.conv_kernel = nn.Conv2d(inc, outc, kernel_size=kernel_size, stride=kernel_size, bias=bias) def forward(self, x, offset): dtype = offset.data.type() ks = self.kernel_size N = offset.size(1) // 2 # Change offset's order from [x1, x2, ..., y1, y2, ...] to [x1, y1, x2, y2, ...] # Codes below are written to make sure same results of MXNet implementation. # You can remove them, and it won't influence the module's performance. offsets_index = Variable(torch.cat([torch.arange(0, 2*N, 2), torch.arange(1, 2*N+1, 2)]), requires_grad=False).type_as(x).long() offsets_index = offsets_index.unsqueeze(dim=0).unsqueeze(dim=-1).unsqueeze(dim=-1).expand(*offset.size()) offset = torch.gather(offset, dim=1, index=offsets_index) # ------------------------------------------------------------------------ if self.padding: x = self.zero_padding(x) # (b, 2N, h, w) p = self._get_p(offset, dtype) # (b, h, w, 2N) p = p.contiguous().permute(0, 2, 3, 1) q_lt = Variable(p.data, requires_grad=False).floor() q_rb = q_lt + 1 q_lt = torch.cat([torch.clamp(q_lt[..., :N], 0, x.size(2)-1), torch.clamp(q_lt[..., N:], 0, x.size(3)-1)], dim=-1).long() q_rb = torch.cat([torch.clamp(q_rb[..., :N], 0, x.size(2)-1), torch.clamp(q_rb[..., N:], 0, x.size(3)-1)], dim=-1).long() q_lb = torch.cat([q_lt[..., :N], q_rb[..., N:]], -1) q_rt = torch.cat([q_rb[..., :N], q_lt[..., N:]], -1) # (b, h, w, N) mask = torch.cat([p[..., :N].lt(self.padding)+p[..., :N].gt(x.size(2)-1-self.padding), p[..., N:].lt(self.padding)+p[..., N:].gt(x.size(3)-1-self.padding)], dim=-1).type_as(p) mask = mask.detach() floor_p = p - (p - torch.floor(p)) p = p*(1-mask) + floor_p*mask p = torch.cat([torch.clamp(p[..., :N], 0, x.size(2)-1), torch.clamp(p[..., N:], 0, x.size(3)-1)], dim=-1) # bilinear kernel (b, h, w, N) g_lt = (1 + (q_lt[..., :N].type_as(p) - p[..., :N])) * (1 + (q_lt[..., N:].type_as(p) - p[..., N:])) g_rb = (1 - (q_rb[..., :N].type_as(p) - p[..., :N])) * (1 - (q_rb[..., N:].type_as(p) - p[..., N:])) g_lb = (1 + (q_lb[..., :N].type_as(p) - p[..., :N])) * (1 - (q_lb[..., N:].type_as(p) - p[..., N:])) g_rt = (1 - (q_rt[..., :N].type_as(p) - p[..., :N])) * (1 + (q_rt[..., N:].type_as(p) - p[..., N:])) # (b, c, h, w, N) x_q_lt = self._get_x_q(x, q_lt, N) x_q_rb = self._get_x_q(x, q_rb, N) x_q_lb = self._get_x_q(x, q_lb, N) x_q_rt = self._get_x_q(x, q_rt, N) # (b, c, h, w, N) x_offset = g_lt.unsqueeze(dim=1) * x_q_lt + \ g_rb.unsqueeze(dim=1) * x_q_rb + \ g_lb.unsqueeze(dim=1) * x_q_lb + \ g_rt.unsqueeze(dim=1) * x_q_rt x_offset = self._reshape_x_offset(x_offset, ks) out = self.conv_kernel(x_offset) return out def _get_p_n(self, N, dtype): p_n_x, p_n_y = np.meshgrid(range(-(self.kernel_size-1)//2, (self.kernel_size-1)//2+1), range(-(self.kernel_size-1)//2, (self.kernel_size-1)//2+1), indexing='ij') # (2N, 1) p_n = np.concatenate((p_n_x.flatten(), p_n_y.flatten())) p_n = np.reshape(p_n, (1, 2*N, 1, 1)) p_n = Variable(torch.from_numpy(p_n).type(dtype), requires_grad=False) return p_n @staticmethod def _get_p_0(h, w, N, dtype): p_0_x, p_0_y = np.meshgrid(range(1, h+1), range(1, w+1), indexing='ij') p_0_x = p_0_x.flatten().reshape(1, 1, h, w).repeat(N, axis=1) p_0_y = p_0_y.flatten().reshape(1, 1, h, w).repeat(N, axis=1) p_0 = np.concatenate((p_0_x, p_0_y), axis=1) p_0 = Variable(torch.from_numpy(p_0).type(dtype), requires_grad=False) return p_0 def _get_p(self, offset, dtype): N, h, w = offset.size(1)//2, offset.size(2), offset.size(3) # (1, 2N, 1, 1) p_n = self._get_p_n(N, dtype) # (1, 2N, h, w) p_0 = self._get_p_0(h, w, N, dtype) p = p_0 + p_n + offset return p def _get_x_q(self, x, q, N): b, h, w, _ = q.size() padded_w = x.size(3) c = x.size(1) # (b, c, h*w) x = x.contiguous().view(b, c, -1) # (b, h, w, N) index = q[..., :N]*padded_w + q[..., N:] # offset_x*w + offset_y # (b, c, h*w*N) index = index.contiguous().unsqueeze(dim=1).expand(-1, c, -1, -1, -1).contiguous().view(b, c, -1) x_offset = x.gather(dim=-1, index=index).contiguous().view(b, c, h, w, N) return x_offset @staticmethod def _reshape_x_offset(x_offset, ks): b, c, h, w, N = x_offset.size() x_offset = torch.cat([x_offset[..., s:s+ks].contiguous().view(b, c, h, w*ks) for s in range(0, N, ks)], dim=-1) x_offset = x_offset.contiguous().view(b, c, h*ks, w*ks) return x_offset 

4. 最后说明

可变形卷积在网络结构书写时,需要经过以下两步

self.conv3 = nn.Conv2d(64, 128, kernel_size=3, padding=1) self.bn3 = nn.BatchNorm2d(128) self.offsets = nn.Conv2d(128, 18, kernel_size=3, padding=1) self.conv4 = DeformConv2D(128, 128, kernel_size=3, padding=1) 
版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请联系我们举报,一经查实,本站将立刻删除。

发布者:全栈程序员-站长,转载请注明出处:https://javaforall.net/231488.html原文链接:https://javaforall.net

(0)
全栈程序员-站长的头像全栈程序员-站长


相关推荐

  • QT 播放器之界面布局[通俗易懂]

    QT 播放器之界面布局[通俗易懂]第一步。。。当然是创建项目啦然后修改项目的名称,接着找一个自己喜欢的文件夹藏着。记得路径不能有中文,当然项目名称也不能有中文之后一直下一步直到完成,来到该界面后双击ui文件去布局右键把菜单栏,工具栏,状态栏去除先把控件摆好,之后再修改名字设置按钮的最大尺寸设置centralWidget布局成右边这样最后修改控件的对象名称…

    2022年6月13日
    43
  • 如何把文件复制到桌面_如何把桌面文件放一起

    如何把文件复制到桌面_如何把桌面文件放一起如何解决电脑桌面文件无法删除问题电脑是现在最常用的工具之一,有些用户遇到了桌面文件无法删除问题,想知道如何解决,接下来小编就给大家介绍一下具体的操作步骤。具体如下:1.首先第一步鼠标右键单击桌面,在弹出的菜单栏中根据下图所示,点击【刷新】选项,查看是否删除文件,或者将电脑重新启动后再次删除。2.第二步如果仍然无法删除文件,则打开【计算机】窗口,根据下图所示,依次点击【组织-文件夹和搜索选项】。…

    2025年8月25日
    2
  • IIS 发生意外错误 0x8ffe2740「建议收藏」

    IIS 发生意外错误 0x8ffe2740「建议收藏」IIS发生意外错误0x8ffe2740 1、IIS发生意外错误0x8ffe2740原因如果系统中存在端口冲突就有可能发生本情况.IIS默认使用80端口进行HTTP通信.如果除IIS外的应用程序正在运行并且正在相同的IP地址上使用80端口,在您试图使用…

    2022年7月14日
    16
  • Android中JNI与NDK

    Android中JNI与NDK

    2021年3月12日
    154
  • 网络配置——Linux运维基础

    网络配置——Linux运维基础

    2021年12月3日
    37
  • FinalShell简单的使用

    FinalShell简单的使用今天真的是很丧的一天,早上来到公司写了一会代码,需要用xshell时发现,以前都能打开的xshell突然出问题了。如下截图…于是想着重启看看。我的天,重启之后,网卡没了,接着就是死活连不上网,不管设置什么都连接不上网,驱动也装不上去,反正就是十八般武艺全用上了(博主可能比较菜),都没作用,于是请人,反正弄了半天,给我放个大招,重装系统 。重装系统肯定就好了,可是环境都没了,开始一点…

    2022年6月13日
    83

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

关注全栈程序员社区公众号