图像处理之霍夫变换(直线检测算法)

图像处理之霍夫变换(直线检测算法)图像处理之霍夫变换 直线检测算法 霍夫变换是图像变换中的经典手段之一 主要用来从图像中分离出具有某种相同特征的几何形状 如 直线 圆等 霍夫变换寻找直线与圆的方法相比与其它方法可以更好的减少噪声干扰 经典的霍夫变换常用来检测直线 圆 椭圆等 nbsp 霍夫变换算法思想 以直线检测为例 每个像素坐标点经过变换都变成都直线特质有贡献的统一度量 一个简单的例子如下 一条直线在图

图像处理之霍夫变换(直线检测算法)

霍夫变换是图像变换中的经典手段之一,主要用来从图像中分离出具有某种相同特征的几何

形状(如,直线,圆等)。霍夫变换寻找直线与圆的方法相比与其它方法可以更好的减少噪

声干扰。经典的霍夫变换常用来检测直线,圆,椭圆等。

 

霍夫变换算法思想:

以直线检测为例,每个像素坐标点经过变换都变成都直线特质有贡献的统一度量,一个简单

的例子如下:一条直线在图像中是一系列离散点的集合,通过一个直线的离散极坐标公式,

可以表达出直线的离散点几何等式如下:

X *cos(theta) + y * sin(theta)  = r 其中角度theta指r与X轴之间的夹角,r为到直线几何垂

直距离。任何在直线上点,x, y都可以表达,其中 r, theta是常量。该公式图形表示如下:

图像处理之霍夫变换(直线检测算法)

然而在实现的图像处理领域,图像的像素坐标P(x, y)是已知的,而r, theta则是我们要寻找

的变量。如果我们能绘制每个(r, theta)值根据像素点坐标P(x, y)值的话,那么就从图像笛卡

尔坐标系统转换到极坐标霍夫空间系统,这种从点到曲线的变换称为直线的霍夫变换。变换

通过量化霍夫参数空间为有限个值间隔等分或者累加格子。当霍夫变换算法开始,每个像素

坐标点P(x, y)被转换到(r, theta)的曲线点上面,累加到对应的格子数据点,当一个波峰出现

时候,说明有直线存在。同样的原理,我们可以用来检测圆,只是对于圆的参数方程变为如

下等式:

(x –a ) ^2 + (y-b) ^ 2 = r^2其中(a, b)为圆的中心点坐标,r圆的半径。这样霍夫的参数空间就

变成一个三维参数空间。给定圆半径转为二维霍夫参数空间,变换相对简单,也比较常用。

 

编程思路解析:

1.      读取一幅带处理二值图像,最好背景为黑色。

2.      取得源像素数据

3.      根据直线的霍夫变换公式完成霍夫变换,预览霍夫空间结果

4.       寻找最大霍夫值,设置阈值,反变换到图像RGB值空间(程序难点之一)

5.      越界处理,显示霍夫变换处理以后的图像

 

关键代码解析:

直线的变换角度为[0 ~ PI]之间,设置等份为500为PI/500,同时根据参数直线参数方程的取值

范围为[-r, r]有如下霍夫参数定义:

 // prepare for hough transform int centerX = width / 2; int centerY = height / 2; double hough_interval = PI_VALUE/(double)hough_space; int max = Math.max(width, height); int max_length = (int)(Math.sqrt(2.0D) * max); hough_1d = new int[2 * hough_space * max_length];

实现从像素RGB空间到霍夫空间变换的代码为:

// start hough transform now.... int[][] image_2d = convert1Dto2D(inPixels); for (int row = 0; row < height; row++) { for (int col = 0; col < width; col++) { int p = image_2d[row][col] & 0xff; if(p == 0) continue; // which means background color // since we does not know the theta angle and r value, // we have to calculate all hough space for each pixel point // then we got the max possible theta and r pair. // r = x * cos(theta) + y * sin(theta) for(int cell=0; cell < hough_space; cell++ ) { max = (int)((col - centerX) * Math.cos(cell * hough_interval) + (row - centerY) * Math.sin(cell * hough_interval)); max += max_length; // start from zero, not (-max_length) if (max < 0 || (max >= 2 * max_length)) {// make sure r did not out of scope[0, 2*max_lenght] continue; } hough_2d[cell][max] +=1; } } }

寻找最大霍夫值计算霍夫阈值的代码如下:

// find the max hough value int max_hough = 0; for(int i=0; i<hough_space; i++) { for(int j=0; j<2*max_length; j++) { hough_1d[(i + j * hough_space)] = hough_2d[i][j]; if(hough_2d[i][j] > max_hough) { max_hough = hough_2d[i][j]; } } } System.out.println("MAX HOUGH VALUE = " + max_hough); // transfer back to image pixels space from hough parameter space int hough_threshold = (int)(threshold * max_hough);

从霍夫空间反变换回像素数据空间代码如下:

 // transfer back to image pixels space from hough parameter space int hough_threshold = (int)(threshold * max_hough); for(int row = 0; row < hough_space; row++) { for(int col = 0; col < 2*max_length; col++) { if(hough_2d[row][col] < hough_threshold) // discard it continue; int hough_value = hough_2d[row][col]; boolean isLine = true; for(int i=-1; i<2; i++) { for(int j=-1; j<2; j++) { if(i != 0 || j != 0) { int yf = row + i; int xf = col + j; if(xf < 0) continue; if(xf < 2*max_length) { if (yf < 0) { yf += hough_space; } if (yf >= hough_space) { yf -= hough_space; } if(hough_2d[yf][xf] <= hough_value) { continue; } isLine = false; break; } } } } if(!isLine) continue; // transform back to pixel data now... double dy = Math.sin(row * hough_interval); double dx = Math.cos(row * hough_interval); if ((row <= hough_space / 4) || (row >= 3 * hough_space / 4)) { for (int subrow = 0; subrow < height; ++subrow) { int subcol = (int)((col - max_length - ((subrow - centerY) * dy)) / dx) + centerX; if ((subcol < width) && (subcol >= 0)) { image_2d[subrow][subcol] = -; } } } else { for (int subcol = 0; subcol < width; ++subcol) { int subrow = (int)((col - max_length - ((subcol - centerX) * dx)) / dy) + centerY; if ((subrow < height) && (subrow >= 0)) { image_2d[subrow][subcol] = -; } } } } }

霍夫变换源图如下:

图像处理之霍夫变换(直线检测算法)

霍夫变换以后,在霍夫空间显示如下:(白色表示已经找到直线信号)

图像处理之霍夫变换(直线检测算法)

最终反变换回到像素空间效果如下:

图像处理之霍夫变换(直线检测算法)

一个更好的运行监测直线的结果(输入为二值图像):

图像处理之霍夫变换(直线检测算法)

完整的霍夫变换源代码如下:

package com.gloomyfish.image.transform;

import java.awt.image.BufferedImage;

import com.process.blur.study.AbstractBufferedImageOp;

public class HoughLineFilter extends AbstractBufferedImageOp {
	public final static double PI_VALUE = Math.PI;
	private int hough_space = 500;
	private int[] hough_1d;
	private int[][] hough_2d;
	private int width;
	private int height;
	
	private float threshold;
	private float scale;
	private float offset;
	
	public HoughLineFilter() {
		// default hough transform parameters
		//	scale = 1.0f;
		//	offset = 0.0f;
		threshold = 0.5f;
		scale = 1.0f;
		offset = 0.0f;
	}
	
	public void setHoughSpace(int space) {
		this.hough_space = space;
	}
	
	public float getThreshold() {
		return threshold;
	}

	public void setThreshold(float threshold) {
		this.threshold = threshold;
	}

	public float getScale() {
		return scale;
	}

	public void setScale(float scale) {
		this.scale = scale;
	}

	public float getOffset() {
		return offset;
	}

	public void setOffset(float offset) {
		this.offset = offset;
	}

	@Override
	public BufferedImage filter(BufferedImage src, BufferedImage dest) {
		width = src.getWidth();
        height = src.getHeight();

        if ( dest == null )
            dest = createCompatibleDestImage( src, null );

        int[] inPixels = new int[width*height];
        int[] outPixels = new int[width*height];
        getRGB( src, 0, 0, width, height, inPixels );
        houghTransform(inPixels, outPixels);
        setRGB( dest, 0, 0, width, height, outPixels );
        return dest;
	}

	private void houghTransform(int[] inPixels, int[] outPixels) {
        // prepare for hough transform
	    int centerX = width / 2;
	    int centerY = height / 2;
	    double hough_interval = PI_VALUE/(double)hough_space;
	    
	    int max = Math.max(width, height);
	    int max_length = (int)(Math.sqrt(2.0D) * max);
	    hough_1d = new int[2 * hough_space * max_length];
	    
	    // define temp hough 2D array and initialize the hough 2D
	    hough_2d = new int[hough_space][2*max_length];
	    for(int i=0; i<hough_space; i++) {
	    	for(int j=0; j<2*max_length; j++) {
	    		hough_2d[i][j] = 0;
	    	}
	    }
	    
	    // start hough transform now....
	    int[][] image_2d = convert1Dto2D(inPixels);
	    for (int row = 0; row < height; row++) {
	    	for (int col = 0; col < width; col++) {
	        	int p = image_2d[row][col] & 0xff;
	        	if(p == 0) continue; // which means background color
	        	
	        	// since we does not know the theta angle and r value, 
	        	// we have to calculate all hough space for each pixel point
	        	// then we got the max possible theta and r pair.
	        	// r = x * cos(theta) + y * sin(theta)
	        	for(int cell=0; cell < hough_space; cell++ ) {
	        		max = (int)((col - centerX) * Math.cos(cell * hough_interval) + (row - centerY) * Math.sin(cell * hough_interval));
	        		max += max_length; // start from zero, not (-max_length)
	        		if (max < 0 || (max >= 2 * max_length)) {// make sure r did not out of scope[0, 2*max_lenght]
	                    continue;
	                }
	        		hough_2d[cell][max] +=1;
	        	}
	        }
	    }
	    
		// find the max hough value
		int max_hough = 0;
		for(int i=0; i<hough_space; i++) {
			for(int j=0; j<2*max_length; j++) {
				hough_1d[(i + j * hough_space)] = hough_2d[i][j];
				if(hough_2d[i][j] > max_hough) {
					max_hough = hough_2d[i][j];
				}
			}
		}
		System.out.println("MAX HOUGH VALUE = " + max_hough);
		
		// transfer back to image pixels space from hough parameter space
		int hough_threshold = (int)(threshold * max_hough);
	    for(int row = 0; row < hough_space; row++) {
	    	for(int col = 0; col < 2*max_length; col++) {
	    		if(hough_2d[row][col] < hough_threshold) // discard it
	    			continue;
	    		int hough_value = hough_2d[row][col];
	    		boolean isLine = true;
	    		for(int i=-1; i<2; i++) {
	    			for(int j=-1; j<2; j++) {
	    				if(i != 0 || j != 0) {
    		              int yf = row + i;
    		              int xf = col + j;
    		              if(xf < 0) continue;
    		              if(xf < 2*max_length) {
    		            	  if (yf < 0) {
    		            		  yf += hough_space;
    		            	  }
    		                  if (yf >= hough_space) {
    		                	  yf -= hough_space;
    		                  }
    		                  if(hough_2d[yf][xf] <= hough_value) {
    		                	  continue;
    		                  }
    		                  isLine = false;
    		                  break;
    		              }
	    				}
	    			}
	    		}
	    		if(!isLine) continue;
	    		
	    		// transform back to pixel data now...
	            double dy = Math.sin(row * hough_interval);
	            double dx = Math.cos(row * hough_interval);
	            if ((row <= hough_space / 4) || (row >= 3 * hough_space / 4)) {
	                for (int subrow = 0; subrow < height; ++subrow) {
	                  int subcol = (int)((col - max_length - ((subrow - centerY) * dy)) / dx) + centerX;
	                  if ((subcol < width) && (subcol >= 0)) {
	                	  image_2d[subrow][subcol] = -16776961;
	                  }
	                }
	              } else {
	                for (int subcol = 0; subcol < width; ++subcol) {
	                  int subrow = (int)((col - max_length - ((subcol - centerX) * dx)) / dy) + centerY;
	                  if ((subrow < height) && (subrow >= 0)) {
	                	  image_2d[subrow][subcol] = -16776961;
	                  }
	                }
	              }
	    	}
	    }
	    
	    // convert to hough 1D and return result
	    for (int i = 0; i < this.hough_1d.length; i++)
	    {
	      int value = clamp((int)(scale * this.hough_1d[i] + offset)); // scale always equals 1
	      this.hough_1d[i] = (0xFF000000 | value + (value << 16) + (value << 8));
	    }
	    
	    // convert to image 1D and return
	    for (int row = 0; row < height; row++) {
	    	for (int col = 0; col < width; col++) {
	        	outPixels[(col + row * width)] = image_2d[row][col];
	        }
	    }
	}
	
	public BufferedImage getHoughImage() {
		BufferedImage houghImage = new BufferedImage(hough_2d[0].length, hough_space, BufferedImage.TYPE_4BYTE_ABGR);
		setRGB(houghImage, 0, 0, hough_2d[0].length, hough_space, hough_1d);
		return houghImage;
	}
	
	public static int clamp(int value) {
	      if (value < 0)
	    	  value = 0;
	      else if (value > 255) {
	    	  value = 255;
	      }
	      return value;
	}
	
	private int[][] convert1Dto2D(int[] pixels) {
		int[][] image_2d = new int[height][width];
		int index = 0;
		for(int row = 0; row < height; row++) {
			for(int col = 0; col < width; col++) {
				index = row * width + col;
				image_2d[row][col] = pixels[index];
			}
		}
		return image_2d;
	}

}

转载文章请务必注明出自本博客!!

学习图像处理,点击视频教程《数字图像处理-基础入门》





版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请联系我们举报,一经查实,本站将立刻删除。

发布者:全栈程序员-站长,转载请注明出处:https://javaforall.net/232622.html原文链接:https://javaforall.net

(0)
全栈程序员-站长的头像全栈程序员-站长


相关推荐

  • 决策树原理及其应用[通俗易懂]

    决策树原理及其应用[通俗易懂]决策树原理及其应用决策树的原理我们先构造一颗简单的决策树来玩一玩。举一个不恰当的例子:小明过年回家,老妈催着他结婚,帮着张罗相亲对象。有三个女孩的资料(简称A、B、C)。关于A:小明问:”身材好吗?”,妈妈说:“好!”,小明说:“见一面”关于B:小明问:”身材好吗?”,妈妈说:“不好!”,小明又问:“漂亮吗?”,妈妈说:“漂亮!”,小明说:“见一面”关于C:

    2025年10月2日
    3
  • 怎么禁止使用360浏览器(怎么才能把自带的浏览器停用)

    360浏览器6.2自带了FlashPlayer,版本为11.6,而我需要使用最新版的FlashPlayer11.9,我安装了最新版的FlashPlayer11.9后,浏览网页时,360浏览器6.2默认使用的是自带的FlashPlayer11.6因此我们必须禁用掉360浏览器自带的FlashPlayer11.6——————————

    2022年4月10日
    378
  • MFC + CxImage 实现自绘半透明按钮

    MFC + CxImage 实现自绘半透明按钮

    2021年8月27日
    59
  • MapReduce 编程不可怕,一篇文章搞定它

    MapReduce 编程不可怕,一篇文章搞定它前言本文隶属于专栏《1000个问题搞定大数据技术体系》,该专栏为笔者原创,引用请注明来源,不足和错误之处请在评论区帮忙指出,谢谢!本专栏目录结构和参考文献请见1000个问题搞定大数据技术体系正文需求:WordCount,大数据领域的HelloWorld。Mapperpackagecom.shockang.study.bigdata.mapreduce;importjava.io.IOException;importorg.apache.hadoop.io.IntWr

    2022年6月14日
    30
  • ajax跨域问题以及解决方案_js跨域请求的三种方法

    ajax跨域问题以及解决方案_js跨域请求的三种方法出于浏览器的同源策略限制。同源策略(Sameoriginpolicy)是一种约定,它是浏览器最核心也最基本的安全功能,如果缺少了同源策略,则浏览器的正常功能可能都会受到影响。可以说Web是构建在同源策略基础之上的,浏览器只是针对同源策略的一种实现。同源策略会阻止一个域的javascript脚本和另外一个域的内容进行交互。所谓同源(即指在同一个域)就是两个页面具有相同的协议(protocol),主机(host)和端口号(port)AJAX跨域请求下面简单模拟一个场景—–>>前端有.

    2022年8月24日
    7
  • Ubuntu安装MariaDB教程「建议收藏」

    Ubuntu安装MariaDB教程「建议收藏」一、环境服务器:Ubuntu16.04.1LTS(GUN/Linux4.4.0-91-genericx86_64)数据库版本:MariaDB10.3二、安装流程2.1进入MariaDB网站在https://downloads.mariadb.org/mariadb/repositories/#mirror=neusoft该地址中,可以查找对应系统的安装命令配置…

    2022年6月11日
    299

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

关注全栈程序员社区公众号