超全面的协方差矩阵介绍

超全面的协方差矩阵介绍阅读本文需要具备一定的线性代数基础 通过本文 你将对协方差矩阵有全面的理解 定义 n 个随机向量 mathbf X X 1 X 2 X n T 两个随机向量的协方差 cov Xi Xj E Xi E Xi Xj E Xj cov X i X j E X i E X i X j E X j cov Xi Xj E Xi

阅读本文需要具备一定的线性代数基础,通过本文,你将对协方差矩阵有全面的理解。


超全面的协方差矩阵介绍

定义

一组随机变量,共n个:
X = ( X 1 , X 2 , . . . , X n ) T \mathbf{X}=(X_1,X_2,…,X_n)^T X=(X1,X2,...,Xn)T

两个随机变量的协方差:
c o v [ X i , X j ] = E [ ( X i − E [ X i ] ) ( X j − E [ X j ] ) ] cov[X_i,X_j]=E[(X_i-E[X_i])(X_j-E[X_j])] cov[Xi,Xj]=E[(XiE[Xi])(XjE[Xj])]

由n*n个协方差组成的协方差矩阵
c o v [ X , X ] = [ c o v [ X 1 , X 1 ] c o v [ X 1 , X 2 ] ⋯ c o v [ X 1 , X n ] c o v [ X 2 , X 1 ] c o v [ X 2 , X 2 ] ⋯ c o v [ X 2 , X n ] ⋮ ⋮ ⋱ ⋮ c o v [ X n , X 1 ] c o v [ X n , X 2 ] ⋯ c o v [ X n , X n ] ] cov[\mathbf{X,X}]={\begin{bmatrix} cov[X_1,X_1]& cov[X_1,X_2] & \cdots & cov[X_1,X_n]\\ cov[X_2,X_1] & cov[X_2,X_2] & \cdots & cov[X_2,X_n]\\ \vdots & \vdots & \ddots & \vdots\\ cov[X_n,X_1] & cov[X_n,X_2] & \cdots & cov[X_n,X_n] \end{bmatrix}} cov[X,X]=cov[X1,X1]cov[X2,X1]cov[Xn,X1]cov[X1,X2]cov[X2,X2]cov[Xn,X2]cov[X1,Xn]cov[X2,Xn]cov[Xn,Xn]

直观理解

  1. 协方差表示两个随机变量之间的线性相关性
  2. 协方差矩阵中的每个元素代表了两个随机变量之间的协方差
  3. 协方差矩阵表示一组随机变量之间的两两线性相关性

例子

图片和示例来源(点击进入图片来源)

有二维随机变量x和y,简便期间,我们对x和y做了去均值处理( x ˉ = y ˉ = 0 \bar x=\bar y = 0 xˉ=yˉ=0),所以x和y之间的协方差: c o v [ x , y ] = E [ ( x − x ˉ ) ( y − y ˉ ) ] = E [ x ⋅ y ] cov[x,y] = E[(x-\bar x)(y-\bar y)]=E[x\cdot y] cov[x,y]=E[(xxˉ)(yyˉ)]=E[xy]

如果x和y的联合分布多分布在一三象限, x ⋅ y x\cdot y xy多为正数,则协方差为正,x和y正相关。


超全面的协方差矩阵介绍

如果x和y的联合分布多分布在二四象限, x ⋅ y x\cdot y xy多为负数,则协方差为负,x和y负相关。


超全面的协方差矩阵介绍

如果x和y的几乎均匀地分散在所有象限中,则 x ⋅ y x\cdot y xy有正有负,均值接近于0,说明x和y之间没有相关性(只是说没有线性相关)。


超全面的协方差矩阵介绍

线性相关与非线性相关

若两个向量的协方差为0,则两个向量不具备线性相关性,但它们仍然可能不独立,因为可能存在非线性的相关性。

具体的,协方差为0但不独立的原因在于:随机向量x和随机向量y之间的关系没有一阶分量,只有二阶或高阶分量(关于一阶分量、二级分量等详见泰勒公式)。

举个例子(来自知乎匿名用户):对于随机变量x和随机变量y,有 x 2 + y 2 = 1 x^2+y^2=1 x2+y2=1,其几何关系如下图:


超全面的协方差矩阵介绍

性质

协方差矩阵是半正定矩阵

半正定矩阵的定义:
设A是实对称矩阵。如果对任意的实非零列向量x有 x T A x ≥ 0 x^TAx≥0 xTAx0,就称A为半正定矩阵。
半正定矩阵的性质:

  1. 半正定矩阵的行列式是非负的
  2. 半正定矩阵的特征值都是非负的

延伸:
实对称矩阵一定是半正定矩阵
证明:协方差矩阵是半正定的
对任意向量y:
y T Σ y = y T E [ ( X − μ ) ( X − μ ) T ] y             = E [ y T ( X − μ ) ( X − μ ) T y ]                    = E [ ( ( X − μ ) T y ) T ( ( x − μ ) T y ) ]       = E [ ∣ ∣ ( X − μ ) T y ∣ ∣ 2 ] ≥ 0 y^T\Sigma y = y^TE[(X-\mu)(X-\mu)^T]y \\ \ \ \ \ \ \ \ \ \ \ \ =E[y^T(X-\mu)(X-\mu)^Ty] \\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ =E[((X-\mu)^Ty)^T((x-\mu)^Ty)] \\ \ \ \ \ \ =E[||(X-\mu)^Ty||^2] \geq 0 yTΣy=yTE[(Xμ)(Xμ)T]y           =E[yT(Xμ)(Xμ)Ty]                  =E[((Xμ)Ty)T((xμ)Ty)]     =E[(Xμ)Ty2]0



正定矩阵的定义:
A是n阶方阵,如果对任何非零向量x,都有 x T A x > 0 x^TAx>0 xTAx>0,其中 x T x^T xT 表示x的转置,就称A正定矩阵
正定矩阵的性质:

  1. 正定矩阵的行列式恒为正
  2. 正定矩阵的特征值均为正

协方差矩阵是实对称矩阵

实对称矩阵的性质:

  1. 实对称矩阵的不同特征值对应的特征向量时正交的
  2. 实对称矩阵的特征值是实数,特征向量是实向量
  3. 实对称矩阵必可对角化,且其相似对角矩阵的对角线元素为n个特征值

实对称矩阵的对角化:
P − 1 A P = P − 1 P ∧ = ∧ P^{-1}AP = P^{-1}P \wedge=\wedge P1AP=P1P=

其中对角矩阵 ∧ \wedge 的对角元素为矩阵A的n个特征值(n个特征值中可能重复的),P由矩阵A的特征向量组成。

与其他统计量的关系

与协方差的关系:

  • 协方差矩阵的第i行第j列的元素是第i个随机向量和第j个随机向量之间的协方差
  • 从协方差到协方差矩阵是从标量随机变量到高维随机向量的推广

与相关系数矩阵的关系:
相关系数矩阵为 c o r r ( X ) corr(\mathbf{X}) corr(X)
corr ⁡ ( X ) = ( diag ⁡ ( c o v ( X X ) ) ) − 1 2   c o v ( X X )   ( diag ⁡ ( c o v ( X X ) ) ) − 1 2 {\displaystyle \operatorname {corr} (\mathbf {X} )={\big (}\operatorname {diag} (cov({\mathbf {X} \mathbf {X} })){\big )}^{-{\frac {1}{2}}}\,cov({\mathbf {X} \mathbf {X}) }\,{\big (}\operatorname {diag} (cov({\mathbf {X} \mathbf {X}) }){\big )}^{-{\frac {1}{2}}}} corr(X)=(diag(cov(XX)))21cov(XX)(diag(cov(XX)))21

延伸:PCA中对协方差矩阵的应用

详见《图文并茂的PCA教程》

Python实战

import numpy as np x = np.array([1, 2, 3, 4, 5, 6, 7, 8, 9]) y = np.array([9, 8, 7, 6, 5, 4, 3, 2, 1]) Sigma = np.cov(x, y) print(Sigma) '''输出: [[ 7.5 -7.5] [-7.5 7.5]] ''' 
版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请联系我们举报,一经查实,本站将立刻删除。

发布者:全栈程序员-站长,转载请注明出处:https://javaforall.net/233900.html原文链接:https://javaforall.net

(0)
全栈程序员-站长的头像全栈程序员-站长


相关推荐

  • idea在线生成激活码(注册激活)「建议收藏」

    (idea在线生成激活码)好多小伙伴总是说激活码老是失效,太麻烦,关注/收藏全栈君太难教程,2021永久激活的方法等着你。IntelliJ2021最新激活注册码,破解教程可免费永久激活,亲测有效,下面是详细链接哦~https://javaforall.net/100143.htmlECCD1ZV74P-eyJsaWNlbnNlSW…

    2022年3月31日
    1.9K
  • Jlink或者stlink用于SWD接口下载程序[通俗易懂]

    Jlink或者stlink用于SWD接口下载程序[通俗易懂]最近要使用stm32f103c8t6最小系统板,直接ISP串口下载程序太麻烦,就想着使用swd接口来调试。结果:通过SWD接口下载程序成功,但调试失败,还不知原因,会的的人麻烦交流一下。SWD接口:3.3VDIO(数据)CLK(时钟)GND1.首先声明jlink和stlink都有jtag和swd调试功能。jlink接口如下:如图,我使用的就是VCC…

    2022年4月25日
    54
  • 【夯实基础】Spring在ssh中的作用

    【夯实基础】Spring在ssh中的作用

    2022年1月22日
    81
  • linux复制文件scp命令,Linux scp命令详解(服务器之间复制文件或目录)

    linux复制文件scp命令,Linux scp命令详解(服务器之间复制文件或目录)scp:服务器之间复制文件或目录一、命令格式:scp[-1246BCpqrv][-ccipher][-Fssh_config][-iidentity_file][-llimit][-ossh_option][-Pport][-Sprogram][[user@]host1:]file1[…][[user@]host2:]file2简易写法:scp[可选参数]…

    2022年8月22日
    3
  • linux下压缩与解压缩-tar和zip_linux打包命令

    linux下压缩与解压缩-tar和zip_linux打包命令linux下tar和zip压缩效率图13总结:通过测试,在本次实验中我们得出的以下几点结论:1.小文件(最好是大于0.5M,如果文件太小,在进行tar打包并压缩或者zip压缩时,其占用的磁盘空间会比源文件大很多)在进行tar打包并压缩或者zip压缩时,其占用磁盘的大小不变;中等文件(100M左右的pdf格式文件),在进行tar打包并压缩或者zip压缩时时,大约节…

    2022年10月8日
    0
  • 宿主机能ping通虚拟机,虚拟机ping不通宿主机_本地电脑ping不通虚拟机

    宿主机能ping通虚拟机,虚拟机ping不通宿主机_本地电脑ping不通虚拟机文章目录一、工作环境二、引出问题1、查看虚拟机IP地址2、查看宿主机IP地址3、进入宿主机CMD窗口,Ping虚拟机,结果Ping不通二、产生原因三、解决问题1、打开网络连接对话框2、启动VMnet8虚拟网络3、进入宿主机CMD窗口,Ping虚拟机,可以Ping通四、利用SecureCRT登录虚拟机五、如何让CentOS8虚拟机与主机相互Ping通…

    2022年8月21日
    3

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

关注全栈程序员社区公众号