《深入浅出 Java Concurrency》—锁紧机构(一)Lock与ReentrantLock

《深入浅出 Java Concurrency》—锁紧机构(一)Lock与ReentrantLock

大家好,又见面了,我是全栈君,今天给大家准备了Idea注册码。

全栈程序员社区此处内容已经被作者隐藏,请输入验证码查看内容
验证码:
请关注本站微信公众号,回复“验证码”,获取验证码。在微信里搜索“全栈程序员社区”或者“www_javaforall_cn”或者微信扫描右侧二维码都可以关注本站微信公众号。

转会:http://www.blogjava.net/xylz/archive/2010/07/05/325274.html

前面的章节主要谈谈原子操作,至于与原子操作一些相关的问题或者说陷阱就放到最后的总结篇来总体说明。

从这一章開始花少量的篇幅谈谈锁机制。

上一个章节 中谈到了锁机制,而且针对于原子操作谈了一些相关的概念和设计思想。接下来的文章中。尽可能的深入研究锁机制,而且理解里面的原理和实际应用场合。

虽然synchronized在语法上已经足够简单了。在JDK 5之前仅仅能借助此实现,可是因为是独占锁。性能却不高,因此JDK 5以后就開始借助于JNI来完毕更高级的锁实现。

JDK 5中的锁是接口java.util.concurrent.locks.Lock 。

另外java.util.concurrent.locks.ReadWriteLock 提供了一对可供读写并发的锁。依据前面的规则,我们从java.util.concurrent.locks.Lock 的API開始。

 

void lock();

获取锁。

假设锁不可用。出于线程调度目的,将禁用当前线程。而且在获得锁之前。该线程将一直处于休眠状态。

void lockInterruptibly() throws InterruptedException;

假设当前线程未被中断。则获取锁。

假设锁可用。则获取锁,并马上返回。

假设锁不可用,出于线程调度目的,将禁用当前线程,而且在发生下面两种情况之中的一个曾经。该线程将一直处于休眠状态:

  • 锁由当前线程获得;或者
  • 其它某个线程中断 当前线程,而且支持对锁获取的中断。

假设当前线程:

  • 在进入此方法时已经设置了该线程的中断状态;或者
  • 在获取锁时被中断 ,而且支持对锁获取的中断,

则将抛出 
 
InterruptedException
 。并清除当前线程的已中断状态。

Condition newCondition();

返回绑定到此  Lock   实例的新  Condition   实例。下一小节中会重点谈Condition,此处不做过多的介绍。

boolean tryLock();

仅在调用时锁为空暇状态才获取该锁。

假设锁可用,则获取锁,并马上返回值  true 。假设锁不可用。则此方法将马上返回值  false 。

通常对于那些不是必须获取锁的操作可能实用。

boolean tryLock(long time, TimeUnit unit) throws InterruptedException;

假设锁在给定的等待时间内空暇,而且当前线程未被中断,则获取锁。

假设锁可用,则此方法将马上返回值  true 。假设锁不可用,出于线程调度目的,将禁用当前线程,而且在发生下面三种情况之中的一个前,该线程将一直处于休眠状态:

  • 锁由当前线程获得;或者
  • 其它某个线程中断当前线程,而且支持对锁获取的中断;或者
  • 已超过指定的等待时间

假设获得了锁,则返回值  true 。

假设当前线程:

  • 在进入此方法时已经设置了该线程的中断状态;或者
  • 在获取锁时被中断,而且支持对锁获取的中断。

则将抛出 
 
InterruptedException
 。并会清除当前线程的已中断状态。

假设超过了指定的等待时间。则将返回值  false 。假设 time 小于等于 0,该方法将全然不等待。

void unlock();

释放锁。

相应于lock()、tryLock()、tryLock(xx)、lockInterruptibly()等操作,假设成功的话应该相应着一个unlock(),这样能够避免死锁或者资源浪费。

 

相对于比較空洞的API。来看一个实际的样例。以下的代码实现了一个类似于AtomicInteger的操作。

package xylz.study.concurrency.lock;

import java.util.concurrent.locks.Lock;
import java.util.concurrent.locks.ReentrantLock;

public class AtomicIntegerWithLock {

    private int value;

    private Lock lock = new ReentrantLock();

    public AtomicIntegerWithLock() {
        super();
    }

    public AtomicIntegerWithLock(int value) {
        this.value = value;
    }

    public final int get() {
        lock.lock();
        try {
            return value;
        } finally {
            lock.unlock();
        }
    }

    public final void set(int newValue) {
        lock.lock();
        try {
            value = newValue;
        } finally {
            lock.unlock();
        }

    }

    public final int getAndSet(int newValue) {
        lock.lock();
        try {
            int ret = value;
            value = newValue;
            return ret;
        } finally {
            lock.unlock();
        }
    }

    public final boolean compareAndSet(int expect, int update) {
        lock.lock();
        try {
            if (value == expect) {
                value = update;
                return true;
            }
            return false;
        } finally {
            lock.unlock();
        }
    }

    public final int getAndIncrement() {
        lock.lock();
        try {
            return value++;
        } finally {
            lock.unlock();
        }
    }

    public final int getAndDecrement() {
        lock.lock();
        try {
            return value–;
        } finally {
            lock.unlock();
        }
    }

    public final int incrementAndGet() {
        lock.lock();
        try {
            return ++value;
        } finally {
            lock.unlock();
        }
    }

    public final int decrementAndGet() {
        lock.lock();
        try {
            return –value;
        } finally {
            lock.unlock();
        }
    }

    public String toString() {
        return Integer.toString(get());
    }
}

AtomicIntegerWithLock 是线程安全的,此结构中大量使用了Lock对象的lock/unlock方法对。相同可以看到的是对于自增和自减操作使用了++/–。之所以可以保证线程安全,是由于Lock对象的lock()方法保证了仅仅有一个线程可以仅仅有此锁。须要说明的是对于不论什么一个lock()方法,都须要一个unlock()方法与之对于,通常情况下为了保证unlock方法总是可以得到运行,unlock方法被置于finally块中。另外这里使用了java.util.concurrent.locks.ReentrantLock.ReentrantLock 对象。下一个小节中会详细描写叙述此类作为Lock的唯一实现是怎样设计和实现的。

虽然synchronized实现Lock的同样语义,而且在语法上比Lock要简单多。可是前者却比后者的开销要大得多。做一个简单的測试。

public static void main(String[] args) throws Exception{
     final int max = 10;
     final int loopCount = 100000;
     long costTime = 0;
     for (int m = 0; m < max; m++) {
         long start1 = System.nanoTime();
         final AtomicIntegerWithLock value1 = new AtomicIntegerWithLock(0);
         Thread[] ts = new Thread[max];
         for(int i=0;i<max;i++) {
             ts[i] = new Thread() {
                 public void run() {
                     for (int i = 0; i < loopCount; i++) {
                         value1.incrementAndGet();
                     }
                 }
             };
         }
         for(Thread t:ts) {
             t.start();
         }
         for(Thread t:ts) {
             t.join();
         }
         long end1 = System.nanoTime();
         costTime += (end1-start1);
     }
     System.out.println(“cost1: ” + (costTime));
     //
     System.out.println();
     costTime = 0;
     //
     final Object lock = new Object();
     for (int m = 0; m < max; m++) {
         staticValue=0;
         long start1 = System.nanoTime();
         Thread[] ts = new Thread[max];
         for(int i=0;i<max;i++) {
             ts[i] = new Thread() {
                 public void run() {
                     for (int i = 0; i < loopCount; i++) {
                         synchronized(lock) {
                             ++staticValue;
                         }
                     }
                 }
             };
         }
         for(Thread t:ts) {
             t.start();
         }
         for(Thread t:ts) {
             t.join();
         }
         long end1 = System.nanoTime();
         costTime += (end1-start1);
     }
     //
     System.out.println(“cost2: ” + (costTime));
}

static int staticValue = 0;

 

在这个样例中每次启动10个线程,每一个线程计算100000次自增操作,反复測试10次,以下是某此測试的结果:

cost1: 624071136

cost2: 2057847833

虽然上面的例子是不是很正规的测试案例,然而,上述例子是为了说明,Lock性能比synchronized更好。那么假设可以随时使用Lock替代synchronized这是一个明智的选择。

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请联系我们举报,一经查实,本站将立刻删除。

发布者:全栈程序员-站长,转载请注明出处:https://javaforall.net/117878.html原文链接:https://javaforall.net

(0)
全栈程序员-站长的头像全栈程序员-站长


相关推荐

  • GridView出现不完整–GridView删除滚动条

    GridView出现不完整–GridView删除滚动条

    2021年9月9日
    69
  • mysql优化 面试_数据库优化方案整理

    mysql优化 面试_数据库优化方案整理点赞是一种积极的生活态度!有支持才有动力!微信搜索公众号【达摩克利斯之笔】获取更多资源,文末有二维码!前言数据库优化是一个老生常谈的问题,刚入门的小白或者工作N年的光头对这个问题应该都不陌生,你要面试一个中高级工程师那么他就想”哥俩好”一样那么粘,面试官肯定会问这个问题,这篇文章我们就和它哥俩好!而且这个问题就是一个送分题,数据库的优化方案基本就是那些,答案也都是固定的,大家只要好好…

    2022年10月27日
    0
  • 微信公众号开发者账号_小程序后端开发教程

    微信公众号开发者账号_小程序后端开发教程编辑模式与开发模式微信公众帐号申请成功后,要想接收处理用户的请求,就必须要在“高级功能”里进行配置,点击“高级功能”,将看到如下界面:从上图中可以看到,高级功能包含两种模式:编辑模式和开发模式,并且这两种模式是互斥关系,即两种模式不能同时开启。那两种模式有什么区别呢?作为开发人员到底要开启哪一种呢?编辑模式:主要针对非编程人员及信息发布类公众帐号使用。开启该模式后,可以方便地通

    2022年9月30日
    0
  • xgboost原理分析以及实践

    xgboost原理分析以及实践摘要本文在写完GBDT的三篇文章后本来就想写的,但一直没有时间,终于刚好碰上需要,有空来写这篇关于xgboost原理以及一些实践的东西(这里实践不是指给出代码然后跑结果,而是我们来手动算一算整个xgboost流程)由于网上已经许多优秀的文章对xgboost原理进行了详细的介绍,特别是xgboost作者陈天奇的论文以及slide已经非常完整阐述了整个xgboost的来龙去脉,现有的文章基本也…

    2022年6月6日
    72
  • 用 Python 破解了同学压缩文件的密码

    用 Python 破解了同学压缩文件的密码↑↑↑关注后"星标"简说Python人人都可以简单入门Python、爬虫、数据分析简说Python推荐作者:blank#来源:https://blog.csdn.n…

    2022年5月25日
    35
  • 不止一个背包的背包问题_背包问题 java

    不止一个背包的背包问题_背包问题 java有 N 个物品和一个容量是 V 的背包。物品之间具有依赖关系,且依赖关系组成一棵树的形状。如果选择一个物品,则必须选择它的父节点。如下图所示:如果选择物品5,则必须选择物品1和2。这是因为2是5的父节点,1是2的父节点。每件物品的编号是 i,体积是 vi,价值是 wi,依赖的父节点编号是 pi。物品的下标范围是 1…N。求解将哪些物品装入背包,可使物品总体积不超过背包容量,且总价值最大。输出最大价值。输入格式第一行有两个整数 N,V,用空格隔开,分别表示物品个数和背包容量。接下来有 N

    2022年8月9日
    0

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

关注全栈程序员社区公众号