机器学习——下采样(under-sampling)「建议收藏」

下采样(under-sampling)什么是下采样?当原始数据的分类极不均衡时,如下图我们要想用这样的数据去建模显然是存在问题的。尤其是在我们更关心少数类的问题的时候数据分类不均衡会更加的突出,例如,信用卡诈骗、病例分析等。在这样的数据分布的情况下,运用机器学习算法的预测模型可能会无法做出准确的预测,最后的模型显然是趋向于预测多数集的,少数集可能会被当做噪点或被忽视,相比多数集,少数集被…

大家好,又见面了,我是你们的朋友全栈君。

下采样(under-sampling)

什么是下采样?

当原始数据的分类极不均衡时,如下图
在这里插入图片描述
在这里插入图片描述
我们要想用这样的数据去建模显然是存在问题的。尤其是在我们更关心少数类的问题的时候数据分类不均衡会更加的突出,例如,信用卡诈骗、病例分析等。在这样的数据分布的情况下,运用机器学习算法的预测模型可能会无法做出准确的预测,最后的模型显然是趋向于预测多数集的,少数集可能会被当做噪点或被忽视,相比多数集,少数集被错分的可能性很大。从本质上讲,机器学习算法就是从大量的数据集中通过计算得到某些经验,进而判定某些数据的正常与否。但是,不均衡数据集,显然少数类的数量太少,模型会更倾向于多数集。

常用的下采样方法

解决数据分布不均衡的下采样的目的就从多数集中选出一部分数据与少数集重新组合成一个新的数据集。那么如何在多数集中选出这样的数据呢?

1. 随机下采样

随机欠采样的思想同样比较简单,就是从多数类样本中随机选取一些剔除掉。这种方法的缺点是被剔除的样本可能包含着一些重要信息,致使学习出来的模型效果不好。

2. EasyEnsemble 和 BalanceCascade

EasyEnsemble和BalanceCascade采用集成学习机制来处理传统随机欠采样中的信息丢失问题。

  • EasyEnsemble将多数类样本随机划分成n个子集,每个子集的数量等于少数类样本的数量,这相当于欠采样。接着将每个子集与少数类样本结合起来分别训练一个模型,最后将n个模型集成,这样虽然每个子集的样本少于总体样本,但集成后总信息量并不减少。
  • 如果说EasyEnsemble是基于无监督的方式从多数类样本中生成子集进行欠采样,那么BalanceCascade则是采用了有监督结合Boosting的方式(Boosting方法是一种用来提高弱分类算法准确度的方法,这种方法通过构造一个预测函数系列,然后以一定的方式将他们组合成一个预测函数)。在第n轮训练中,将从多数类样本中抽样得来的子集与少数类样本结合起来训练一个基学习器H,训练完后多数类中能被H正确分类的样本会被剔除。在接下来的第n+1轮中,从被剔除后的多数类样本中产生子集用于与少数类样本结合起来训练,最后将不同的基学习器集成起来。BalanceCascade的有监督表现在每一轮的基学习器起到了在多数类中选择样本的作用,而其Boosting特点则体现在每一轮丢弃被正确分类的样本,进而后续基学习器会更注重那些之前分类错误的样本。

3. NearMiss

NearMiss本质上是一种原型选择(prototype selection)方法,即从多数类样本中选取最具代表性的样本用于训练,主要是为了缓解随机欠采样中的信息丢失问题。NearMiss采用一些启发式的规则来选择样本,根据规则的不同可分为3类:

  • NearMiss-1:选择到最近的K个少数类样本平均距离最近的多数类样本
  • NearMiss-2:选择到最远的K个少数类样本平均距离最近的多数类样本
  • NearMiss-3:对于每个少数类样本选择K个最近的多数类样本,目的是保证每个少数类样本都被多数类样本包围

NearMiss-1和NearMiss-2的计算开销很大,因为需要计算每个多类别样本的K近邻点。另外,NearMiss-1易受离群点的影响,如下面第二幅图中合理的情况是处于边界附近的多数类样本会被选中,然而由于右下方一些少数类离群点的存在,其附近的多数类样本就被选择了。相比之下NearMiss-2和NearMiss-3不易产生这方面的问题。

在这里插入图片描述

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请联系我们举报,一经查实,本站将立刻删除。

发布者:全栈程序员-站长,转载请注明出处:https://javaforall.net/124688.html原文链接:https://javaforall.net

(0)
全栈程序员-站长的头像全栈程序员-站长


相关推荐

  • C#多线程同步事件及等待句柄

    C#多线程同步事件及等待句柄最近捣鼓了一下多线程的同步问题,发现其实C#关于多线程同步事件处理还是很灵活,这里主要写一下,自己测试的一些代码,涉及到了AutoResetEvent和ManualResetEvent,当然还有也简要提了一下System.Threading.WaitHandle.WaitOne、System.Threading.WaitHandle.WaitAny和System.Threading.Wait

    2022年7月15日
    11
  • Pytest(1)安装与入门[通俗易懂]

    Pytest(1)安装与入门[通俗易懂]pytest介绍pytest是python的一种单元测试框架,与python自带的unittest测试框架类似,但是比unittest框架使用起来更简洁,效率更高。根据pytest的官方网站介绍,它

    2022年7月30日
    1
  • MLP多层感知机(人工神经网络)原理及代码实现

    MLP多层感知机(人工神经网络)原理及代码实现一、多层感知机(MLP)原理简介多层感知机(MLP,MultilayerPerceptron)也叫人工神经网络(ANN,ArtificialNeuralNetwork),除了输入输出层,它中间可以有多个隐层,最简单的MLP只含一个隐层,即三层的结构,如下图:从上图可以看到,多层感知机层与层之间是全连接的(全连接的意思就是:上一层的任何一个神经元与下一层的所有神经元都有连接)。多层感知机最底层…

    2022年6月17日
    105
  • 深度学习: ILSVRC竞赛

    深度学习: ILSVRC竞赛LargeScaleVisualRecognitionChallenge(ILSVRC):-ILSVR全称ImageNetLargeScaleVisualRecognitionCompetition举办单位ImageNet首届2010(AlexNet夺冠)终届2017(SENet夺冠)…

    2022年8月30日
    0
  • requestmethod post和get_post与get

    requestmethod post和get_post与get一、GetMethodtry{HttpClientclient=newHttpClient();StringOrderId_url="http://api.t.sina.com.cn/short_url/shorten.json?source=3271760578&url_long="+req.ge…

    2022年9月2日
    3
  • a++ 和 ++a 的区别

    a++ 和 ++a 的区别

    2021年9月30日
    42

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

关注全栈程序员社区公众号